Publication:
Predicting mortality in hemodialysis patients using machine learning analysis

dc.contributor.authorGarcia-Montemayor, Victoria
dc.contributor.authorMartin-Malo, Alejandro
dc.contributor.authorBarbieri, Carlo
dc.contributor.authorBellocchio, Francesco
dc.contributor.authorSoriano, Sagrario
dc.contributor.authorPendon-Ruiz de Mier, Victoria
dc.contributor.authorMolina, Ignacio R.
dc.contributor.authorAljama, Pedro
dc.contributor.authorRodriguez, Mariano
dc.contributor.authoraffiliation[Garcia-Montemayor,V; Martin-Malo,A; Soriano,S; Pendon-Ruiz de Mier,V; Molina,IR; Aljama,P; Rodriguez,M] Department of Nephrology, Reina Sofia University Hospital, Cordoba, Spain. [Martin-Malo,A; Pendon-Ruiz de Mier,V; Aljama,P; Rodriguez,M] Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain. [Martin-Malo,A; Rodriguez,M] RETICs-REDinREN (National Institute of Health Carlos III), Madrid, Spain. [Barbieri,C; Bellocchio,F] Fresenius Medical Care Italia, Vaiano Cremasco, Cremona, Italy.
dc.contributor.funderThis study was supported by grants from the National Institute of Health Carlos III (FIS 17/01785, FIS 17/01010), RETICs Red Renal RD06/0016/0007, the Consejeria de Salud of Junta de Andalucia (PI-0311-2014), the REDinREN from the National Institute of Health Carlos III (RD16/0009/0034) and the European group EUTox and CKD-MBD group.
dc.date.accessioned2022-07-12T08:19:41Z
dc.date.available2022-07-12T08:19:41Z
dc.date.issued2021
dc.description.abstractBackground. Besides the classic logistic regression analysis, non-parametric methods based on machine learning techniques such as random forest are presently used to generate predictive models. The aim of this study was to evaluate random forest mortality prediction models in haemodialysis patients. Methods. Data were acquired from incident haemodialysis patients between 1995 and 2015. Prediction of mortality at 6 months, 1 year and 2 years of haemodialysis was calculated using random forest and the accuracy was compared with logistic regression. Baseline data were constructed with the information obtained during the initial period of regular haemodialysis. Aiming to increase accuracy concerning baseline information of each patient, the period of time used to collect data was set at 30, 60 and 90 days after the first haemodialysis session. Results. There were 1571 incident haemodialysis patients included. The mean age was 62.3 years and the average Charlson comorbidity index was 5.99. The mortality prediction models obtained by random forest appear to be adequate in terms of accuracy [area under the curve (AUC) 0.68–0.73] and superior to logistic regression models (DAUC 0.007–0.046). Results indicate that both random forest and logistic regression develop mortality prediction models using different variables. Conclusions. Random forest is an adequate method, and superior to logistic regression, to generate mortality prediction models in haemodialysis patients.es_ES
dc.description.versionYeses_ES
dc.identifier.citationGarcia-Montemayor V, Martin-Malo A, Barbieri C, Bellocchio F, Soriano S, Pendon-Ruiz de Mier V, et al. Predicting mortality in hemodialysis patients using machine learning analysis. Clin Kidney J. 2020 Aug 11;14(5):1388-1395es_ES
dc.identifier.doi10.1093/ckj/sfaa126es_ES
dc.identifier.essn2048-8513
dc.identifier.issn2048-8505
dc.identifier.pmcPMC8247746
dc.identifier.pmid34221370es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3778
dc.journal.titleClinical Kidney Journal
dc.language.isoen
dc.page.number8 p.
dc.publisherOxford University Press on behalf of ERA-EDTAes_ES
dc.relation.publisherversionhttps://academic.oup.com/ckj/article/14/5/1388/5891276?login=falsees_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectHaemodialysises_ES
dc.subjectMachine learninges_ES
dc.subjectMortalityes_ES
dc.subjectPredictive modelses_ES
dc.subjectRandom forestes_ES
dc.subjectDiálisis renales_ES
dc.subjectAprendizaje automáticoes_ES
dc.subjectMortalidades_ES
dc.subjectPredicciónes_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Models, Theoretical::Models, Statistical::Logistic Modelses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Area Under Curvees_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Therapeutics::Renal Replacement Therapy::Renal Dialysises_ES
dc.subject.meshMedical Subject Headings::Health Care::Health Care Quality, Access, and Evaluation::Quality of Health Care::Epidemiologic Factors::Comorbidityes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Data Collection::Vital Statistics::Mortalityes_ES
dc.subject.meshMedical Subject Headings::Anatomy::Urogenital System::Urinary Tract::Kidneyes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Therapeutics::Renal Replacement Therapy::Renal Dialysises_ES
dc.subject.meshMedical Subject Headings::Anthropology, Education, Sociology and Social Phenomena::Social Sciences::Forecastinges_ES
dc.titlePredicting mortality in hemodialysis patients using machine learning analysises_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
GarciaMontemayor_PredictingMortality.pdf
Size:
621.14 KB
Format:
Adobe Portable Document Format
Description:
Artículo original
No Thumbnail Available
Name:
GarciaMontemayor_PredictingMortality_MaterialSuplementario.docx
Size:
90 KB
Format:
Microsoft Word XML
Description:
Material suplementario