Publication:
Nav1.1-Overexpressing Interneuron Transplants Restore Brain Rhythms and Cognition in a Mouse Model of Alzheimer's Disease.

dc.contributor.authorMartinez-Losa, Magdalena
dc.contributor.authorTracy, Tara E
dc.contributor.authorMa, Keran
dc.contributor.authorVerret, Laure
dc.contributor.authorClemente-Perez, Alexandra
dc.contributor.authorKhan, Abdullah S
dc.contributor.authorCobos, Inma
dc.contributor.authorHo, Kaitlyn
dc.contributor.authorGan, Li
dc.contributor.authorMucke, Lennart
dc.contributor.authorAlvarez-Dolado, Manuel
dc.contributor.authorPalop, Jorge J
dc.date.accessioned2023-01-25T10:05:19Z
dc.date.available2023-01-25T10:05:19Z
dc.date.issued2018-03-15
dc.description.abstractInhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD. Increased Nav1.1 levels accelerated action potential kinetics of transplanted fast-spiking and non-fast-spiking interneurons. Nav1.1-deficient interneuron transplants were sufficient to cause behavioral abnormalities in wild-type mice. We conclude that the efficacy of interneuron transplantation and the function of transplanted cells in an AD-relevant context depend on their Nav1.1 levels. Disease-specific molecular optimization of cell transplants may be required to ensure therapeutic benefits in different conditions.
dc.identifier.doi10.1016/j.neuron.2018.02.029
dc.identifier.essn1097-4199
dc.identifier.pmcPMC5886814
dc.identifier.pmid29551491
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886814/pdf
dc.identifier.unpaywallURLhttp://www.cell.com/article/S0896627318301508/pdf
dc.identifier.urihttp://hdl.handle.net/10668/12253
dc.issue.number1
dc.journal.titleNeuron
dc.journal.titleabbreviationNeuron
dc.language.isoen
dc.organizationCentro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER
dc.page.number75-89.e5
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, N.I.H., Extramural
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rights.accessRightsopen access
dc.subjectEEG
dc.subjectGABAergic
dc.subjectScn1a
dc.subjectcell therapy
dc.subjectepileptic
dc.subjectlearning and memory
dc.subjectoscillations
dc.subjectparvalbumin
dc.subjectseizures
dc.subjectsomatostatin
dc.subject.meshAction Potentials
dc.subject.meshAlzheimer Disease
dc.subject.meshAnimals
dc.subject.meshBrain
dc.subject.meshBrain Waves
dc.subject.meshCognition
dc.subject.meshDisease Models, Animal
dc.subject.meshGene Expression
dc.subject.meshHippocampus
dc.subject.meshHumans
dc.subject.meshInterneurons
dc.subject.meshLocomotion
dc.subject.meshMaze Learning
dc.subject.meshMice
dc.subject.meshMice, Transgenic
dc.subject.meshNAV1.1 Voltage-Gated Sodium Channel
dc.titleNav1.1-Overexpressing Interneuron Transplants Restore Brain Rhythms and Cognition in a Mouse Model of Alzheimer's Disease.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number98
dspace.entity.typePublication

Files