Publication: Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling.
dc.contributor.author | Ewing, Adam D | |
dc.contributor.author | Smits, Nathan | |
dc.contributor.author | Sanchez-Luque, Francisco J | |
dc.contributor.author | Faivre, Jamila | |
dc.contributor.author | Brennan, Paul M | |
dc.contributor.author | Richardson, Sandra R | |
dc.contributor.author | Cheetham, Seth W | |
dc.contributor.author | Faulkner, Geoffrey J | |
dc.date.accessioned | 2023-02-09T09:47:56Z | |
dc.date.available | 2023-02-09T09:47:56Z | |
dc.date.issued | 2020-11-12 | |
dc.description.abstract | Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization. | |
dc.identifier.doi | 10.1016/j.molcel.2020.10.024 | |
dc.identifier.essn | 1097-4164 | |
dc.identifier.pmid | 33186547 | |
dc.identifier.unpaywallURL | http://www.cell.com/article/S1097276520307310/pdf | |
dc.identifier.uri | http://hdl.handle.net/10668/16598 | |
dc.issue.number | 5 | |
dc.journal.title | Molecular cell | |
dc.journal.titleabbreviation | Mol Cell | |
dc.language.iso | en | |
dc.organization | Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica-GENYO | |
dc.page.number | 915-928.e5 | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Research Support, Non-U.S. Gov't | |
dc.rights.accessRights | open access | |
dc.subject | Alu | |
dc.subject | LINE-1 | |
dc.subject | SVA | |
dc.subject | methylation | |
dc.subject | nanopore | |
dc.subject | retrotransposon | |
dc.subject.mesh | DNA Methylation | |
dc.subject.mesh | DNA Transposable Elements | |
dc.subject.mesh | DNA, Neoplasm | |
dc.subject.mesh | Epigenesis, Genetic | |
dc.subject.mesh | Epigenome | |
dc.subject.mesh | Female | |
dc.subject.mesh | Gene Expression Profiling | |
dc.subject.mesh | Gene Expression Regulation, Neoplastic | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Long Interspersed Nucleotide Elements | |
dc.subject.mesh | Middle Aged | |
dc.subject.mesh | Nanopore Sequencing | |
dc.subject.mesh | Neoplasms | |
dc.subject.mesh | Organ Specificity | |
dc.title | Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 80 | |
dspace.entity.type | Publication |