Publication:
Reversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells.

dc.contributor.authorAltea-Manzano, Patricia
dc.contributor.authorVandekeere, Anke
dc.contributor.authorEdwards-Hicks, Joy
dc.contributor.authorRoldan, Mar
dc.contributor.authorAbraham, Emily
dc.contributor.authorLleshi, Xhordi
dc.contributor.authorGuerrieri, Ania Naila
dc.contributor.authorBerardi, Domenica
dc.contributor.authorWills, Jimi
dc.contributor.authorJunior, Jair Marques
dc.contributor.authorPantazi, Asimina
dc.contributor.authorAcosta, Juan Carlos
dc.contributor.authorSanchez-Martin, Rosario M
dc.contributor.authorFendt, Sarah-Maria
dc.contributor.authorMartin-Hernandez, Miguel
dc.contributor.authorFinch, Andrew J
dc.date.accessioned2023-05-03T15:10:11Z
dc.date.available2023-05-03T15:10:11Z
dc.date.issued2022-11-02
dc.description.abstractInhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.
dc.identifier.doi10.1016/j.molcel.2022.10.005
dc.identifier.essn1097-4164
dc.identifier.pmid36327975
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.molcel.2022.10.005
dc.identifier.urihttp://hdl.handle.net/10668/22394
dc.issue.number23
dc.journal.titleMolecular cell
dc.journal.titleabbreviationMol Cell
dc.language.isoen
dc.organizationCentro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica-GENYO
dc.page.number4537-4547.e7
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectanaplerosis
dc.subjectcancer
dc.subjectcancer metabolism
dc.subjectmetabolism
dc.subjectmitochondrion
dc.subjectredox
dc.subjectredox transfer
dc.subjectrespiration
dc.subject.meshNAD
dc.subject.meshMalate Dehydrogenase
dc.subject.meshOxidation-Reduction
dc.subject.meshCitric Acid Cycle
dc.subject.meshRespiration
dc.titleReversal of mitochondrial malate dehydrogenase 2 enables anaplerosis via redox rescue in respiration-deficient cells.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number82
dspace.entity.typePublication

Files