Publication: Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.
dc.contributor.author | Rodriguez-Arco, Laura | |
dc.contributor.author | Rodriguez, Ismael A | |
dc.contributor.author | Carriel, Victor | |
dc.contributor.author | Bonhome-Espinosa, Ana B | |
dc.contributor.author | Campos, Fernando | |
dc.contributor.author | Kuzhir, Pavel | |
dc.contributor.author | Duran, Juan D G | |
dc.contributor.author | Lopez-Lopez, Modesto T | |
dc.contributor.funder | Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad, Spain, co-funded by ERDF, European Union | |
dc.contributor.funder | Fundación Pública Andaluza Progreso y Salud, Consejería de Salud, Junta de Andalucía, Spain | |
dc.date.accessioned | 2023-01-25T08:31:33Z | |
dc.date.available | 2023-01-25T08:31:33Z | |
dc.date.issued | 2016-03-10 | |
dc.description.abstract | The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications. | |
dc.description.sponsorship | This study was supported by projects FIS2013-41821-R and FISPI14-1343 (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad, Spain, co-funded by ERDF, European Union) and project PI-0653-2013 (Fundación Pública Andaluza Progreso y Salud, Consejería de Salud, Junta de Andalucía, Spain). L.R.-A acknowledges financial support from the University of Granada (Contratos Puente and Fortalecimiento de Doctores programs). The authors are also grateful to NanoMyP® (Spain) for providing PolymP–H particles and for helpful discussion, and to Amalia de la Rosa Romero and Concepción López Rodríguez for their technical assistance and care of the experimental animals used in this study (Experimental Unit of the University Hospital Virgen de las Nieves, Granada). | |
dc.description.version | Si | |
dc.identifier.citation | Rodriguez-Arco L, Rodriguez IA, Carriel V, Bonhome-Espinosa AB, Campos F, Kuzhir P, et al. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale. 2016 Apr 21;8(15):8138-8150. | |
dc.identifier.doi | 10.1039/c6nr00224b | |
dc.identifier.essn | 2040-3372 | |
dc.identifier.pmid | 27029891 | |
dc.identifier.unpaywallURL | https://pubs.rsc.org/en/content/articlepdf/2016/nr/c6nr00224b | |
dc.identifier.uri | http://hdl.handle.net/10668/9957 | |
dc.issue.number | 15 | |
dc.journal.title | Nanoscale | |
dc.journal.titleabbreviation | Nanoscale | |
dc.language.iso | en | |
dc.organization | Instituto de Investigación Biosanitaria ibs. GRANADA | |
dc.page.number | 8138-8150 | |
dc.provenance | Realizada la curación de contenido 21/08/2024 | |
dc.publisher | Royal Society of Chemistry | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Research Support, Non-U.S. Gov't | |
dc.relation.projectID | FIS2013-41821-R | |
dc.relation.projectID | FISPI14-1343 | |
dc.relation.projectID | PI-0653-2013 | |
dc.relation.publisherversion | https://doi.org/10.1039/c6nr00224b | |
dc.rights | Attribution-NonCommercial 3.0 Unported | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/ | |
dc.subject | Humans | |
dc.subject | Male | |
dc.subject | Microscopy, Electron | |
dc.subject | Sepharose | |
dc.subject | Biocompatible Materials | |
dc.subject.decs | Animales | |
dc.subject.decs | Ensayo de materiales | |
dc.subject.decs | Fibrina | |
dc.subject.decs | Fibroblastos | |
dc.subject.decs | Ingeniería de tejidos | |
dc.subject.decs | Magnetismo | |
dc.subject.decs | Nanocompuestos | |
dc.subject.decs | Nanopartículas de Magnetita | |
dc.subject.decs | Polietilenglicoles | |
dc.subject.decs | Proliferación celular | |
dc.subject.decs | Ratones | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Cell Proliferation | |
dc.subject.mesh | Fibrin | |
dc.subject.mesh | Fibroblasts | |
dc.subject.mesh | Magnetics | |
dc.subject.mesh | Magnetite Nanoparticles | |
dc.subject.mesh | Materials Testing | |
dc.subject.mesh | Mice | |
dc.subject.mesh | Nanocomposites | |
dc.subject.mesh | Polyethylene Glycols | |
dc.subject.mesh | Tissue Engineering | |
dc.title | Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 8 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- RISalud_Accesorestringido.pdf
- Size:
- 93.39 KB
- Format:
- Adobe Portable Document Format