Publication:
Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.

dc.contributor.authorRodriguez-Arco, Laura
dc.contributor.authorRodriguez, Ismael A
dc.contributor.authorCarriel, Victor
dc.contributor.authorBonhome-Espinosa, Ana B
dc.contributor.authorCampos, Fernando
dc.contributor.authorKuzhir, Pavel
dc.contributor.authorDuran, Juan D G
dc.contributor.authorLopez-Lopez, Modesto T
dc.contributor.funderPlan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad, Spain, co-funded by ERDF, European Union
dc.contributor.funderFundación Pública Andaluza Progreso y Salud, Consejería de Salud, Junta de Andalucía, Spain
dc.date.accessioned2023-01-25T08:31:33Z
dc.date.available2023-01-25T08:31:33Z
dc.date.issued2016-03-10
dc.description.abstractThe inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.
dc.description.sponsorshipThis study was supported by projects FIS2013-41821-R and FISPI14-1343 (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad, Spain, co-funded by ERDF, European Union) and project PI-0653-2013 (Fundación Pública Andaluza Progreso y Salud, Consejería de Salud, Junta de Andalucía, Spain). L.R.-A acknowledges financial support from the University of Granada (Contratos Puente and Fortalecimiento de Doctores programs). The authors are also grateful to NanoMyP® (Spain) for providing PolymP–H particles and for helpful discussion, and to Amalia de la Rosa Romero and Concepción López Rodríguez for their technical assistance and care of the experimental animals used in this study (Experimental Unit of the University Hospital Virgen de las Nieves, Granada).
dc.description.versionSi
dc.identifier.citationRodriguez-Arco L, Rodriguez IA, Carriel V, Bonhome-Espinosa AB, Campos F, Kuzhir P, et al. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale. 2016 Apr 21;8(15):8138-8150.
dc.identifier.doi10.1039/c6nr00224b
dc.identifier.essn2040-3372
dc.identifier.pmid27029891
dc.identifier.unpaywallURLhttps://pubs.rsc.org/en/content/articlepdf/2016/nr/c6nr00224b
dc.identifier.urihttp://hdl.handle.net/10668/9957
dc.issue.number15
dc.journal.titleNanoscale
dc.journal.titleabbreviationNanoscale
dc.language.isoen
dc.organizationInstituto de Investigación Biosanitaria ibs. GRANADA
dc.page.number8138-8150
dc.provenanceRealizada la curación de contenido 21/08/2024
dc.publisherRoyal Society of Chemistry
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDFIS2013-41821-R
dc.relation.projectIDFISPI14-1343
dc.relation.projectIDPI-0653-2013
dc.relation.publisherversionhttps://doi.org/10.1039/c6nr00224b
dc.rightsAttribution-NonCommercial 3.0 Unported
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/
dc.subjectHumans
dc.subjectMale
dc.subjectMicroscopy, Electron
dc.subjectSepharose
dc.subjectBiocompatible Materials
dc.subject.decsAnimales
dc.subject.decsEnsayo de materiales
dc.subject.decsFibrina
dc.subject.decsFibroblastos
dc.subject.decsIngeniería de tejidos
dc.subject.decsMagnetismo
dc.subject.decsNanocompuestos
dc.subject.decsNanopartículas de Magnetita
dc.subject.decsPolietilenglicoles
dc.subject.decsProliferación celular
dc.subject.decsRatones
dc.subject.meshAnimals
dc.subject.meshCell Proliferation
dc.subject.meshFibrin
dc.subject.meshFibroblasts
dc.subject.meshMagnetics
dc.subject.meshMagnetite Nanoparticles
dc.subject.meshMaterials Testing
dc.subject.meshMice
dc.subject.meshNanocomposites
dc.subject.meshPolyethylene Glycols
dc.subject.meshTissue Engineering
dc.titleBiocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number8
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RISalud_Accesorestringido.pdf
Size:
93.39 KB
Format:
Adobe Portable Document Format