Publication:
Assessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniques

dc.contributor.authorFernández Pozo, Rubén
dc.contributor.authorBlanco Murillo, Jose L
dc.contributor.authorHernández Gómez, Luis
dc.contributor.authorLópez Gonzalo, Eduardo
dc.contributor.authorAlcázar Ramírez, José
dc.contributor.authorToledano, Doroteo T
dc.contributor.authoraffiliation[Fernández Pozo,R; Blanco Murillo,JL; Hernández Gómez,L; López Gonzalo,E] Signal, Systems and Radiocommunications Departament, Universidad Politécnica de Madrid, Madrid, Spain. [Alcázar Ramírez,J] Respiratory Departament, Hospital Torrecárdenas, Almería, Spain. [Toledano,DT] ATVS Biometric Recognition group, Universidad Autónoma de Madrid, Madrid, Spain.es
dc.contributor.funderThe activities described in this paper were funded by the Spanish Ministry of Science and Technology as part of the TEC2006-13170-C02-02 Project.
dc.date.accessioned2012-10-16T07:56:17Z
dc.date.available2012-10-16T07:56:17Z
dc.date.issued2009-06-14
dc.descriptionThis article is part of the series Analysis and Signal Processing of Oesophageal and Pathological Voices.es
dc.description.abstractThis study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.es
dc.description.versionYeses
dc.identifier.citationFernández Pozo R, Blanco Murillo JL, Hernández Gómez L, López Gonzalo E, Alcázar Ramírez J , Toledano DT. Assessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniques. EURASIP J Adv Signal Process. 2009:982531es
dc.identifier.doi10.1155/2009/982531
dc.identifier.issn1687-6172
dc.identifier.urihttp://hdl.handle.net/10668/573
dc.journal.titleEURASIP Journal on Advances in Signal Processing
dc.language.isoen
dc.publisherHindawi Publishing Corporationes
dc.relation.publisherversionhttp://asp.eurasipjournals.com/content/2009/1/982531/es
dc.rights.accessRightsopen access
dc.subjectPrograma informático para el reconocimiento del lenguaje habladoes
dc.subjectApnea del sueño obstructivaes
dc.subjectDistribución normales
dc.subjectTrastornos de la vozes
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Software::Speech Recognition Softwarees
dc.subject.meshMedical Subject Headings::Diseases::Respiratory Tract Diseases::Respiration Disorders::Apnea::Sleep Apnea Syndromes::Sleep Apnea, Obstructivees
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Mathematical Concepts::Statistical Distributions::Normal Distributiones
dc.subject.meshMedical Subject Headings::Diseases::Otorhinolaryngologic Diseases::Laryngeal Diseases::Voice Disorderses
dc.titleAssessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniqueses
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fernandez-Pozo_Assesssment.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado