Publication:
POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern.

dc.contributor.authorServián-Morilla, E
dc.contributor.authorCabrera-Serrano, M
dc.contributor.authorJohnson, K
dc.contributor.authorPandey, A
dc.contributor.authorIto, A
dc.contributor.authorRivas, E
dc.contributor.authorChamova, T
dc.contributor.authorMuelas, N
dc.contributor.authorMongini, T
dc.contributor.authorNafissi, S
dc.contributor.authorClaeys, K G
dc.contributor.authorGrewal, R P
dc.contributor.authorTakeuchi, M
dc.contributor.authorHao, H
dc.contributor.authorBönnemann, C
dc.contributor.authorLopes Abath Neto, O
dc.contributor.authorMedne, L
dc.contributor.authorBrandsema, J
dc.contributor.authorTöpf, A
dc.contributor.authorTaneva, A
dc.contributor.authorVilchez, J J
dc.contributor.authorTournev, I
dc.contributor.authorHaltiwanger, R S
dc.contributor.authorTakeuchi, H
dc.contributor.authorJafar-Nejad, H
dc.contributor.authorStraub, V
dc.contributor.authorParadas, Carmen
dc.date.accessioned2023-02-08T14:39:04Z
dc.date.available2023-02-08T14:39:04Z
dc.date.issued2020-01-03
dc.description.abstractProtein O-glucosyltransferase 1 (POGLUT1) activity is critical for the Notch signaling pathway, being one of the main enzymes responsible for the glycosylation of the extracellular domain of Notch receptors. A biallelic mutation in the POGLUT1 gene has been reported in one family as the cause of an adult-onset limb-girdle muscular dystrophy (LGMD R21; OMIM# 617232). As the result of a collaborative international effort, we have identified the first cohort of 15 patients with LGMD R21, from nine unrelated families coming from different countries, providing a reliable phenotype-genotype and mechanistic insight. Patients carrying novel mutations in POGLUT1 all displayed a clinical picture of limb-girdle muscle weakness. However, the age at onset was broadened from adult to congenital and infantile onset. Moreover, we now report that the unique muscle imaging pattern of "inside-to-outside" fatty degeneration observed in the original cases is indeed a defining feature of POGLUT1 muscular dystrophy. Experiments on muscle biopsies from patients revealed a remarkable and consistent decrease in the level of the NOTCH1 intracellular domain, reduction of the pool of satellite cells (SC), and evidence of α-dystroglycan hypoglycosylation. In vitro biochemical and cell-based assays suggested a pathogenic role of the novel POGLUT1 mutations, leading to reduced enzymatic activity and/or protein stability. The association between the POGLUT1 variants and the muscular phenotype was established by in vivo experiments analyzing the indirect flight muscle development in transgenic Drosophila, showing that the human POGLUT1 mutations reduced its myogenic activity. In line with the well-known role of the Notch pathway in the homeostasis of SC and muscle regeneration, SC-derived myoblasts from patients' muscle samples showed decreased proliferation and facilitated differentiation. Together, these observations suggest that alterations in SC biology caused by reduced Notch1 signaling result in muscular dystrophy in LGMD R21 patients, likely with additional contribution from α-dystroglycan hypoglycosylation. This study settles the muscular clinical phenotype linked to POGLUT1 mutations and establishes the pathogenic mechanism underlying this muscle disorder. The description of a specific imaging pattern of fatty degeneration and muscle pathology with a decrease of α-dystroglycan glycosylation provides excellent tools which will help diagnose and follow up LGMD R21 patients.
dc.identifier.doi10.1007/s00401-019-02117-6
dc.identifier.essn1432-0533
dc.identifier.pmcPMC7196238
dc.identifier.pmid31897643
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196238/pdf
dc.identifier.unpaywallURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196238
dc.identifier.urihttp://hdl.handle.net/10668/14912
dc.issue.number3
dc.journal.titleActa neuropathologica
dc.journal.titleabbreviationActa Neuropathol
dc.language.isoen
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.organizationHospital Universitario Virgen del Rocío
dc.page.number565-582
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, N.I.H., Extramural
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rights.accessRightsopen access
dc.subjectMuscle dystrophy
dc.subjectNotch
dc.subjectPOGLUT1
dc.subjectSatellite cells
dc.subjectα-Dystroglycan
dc.subject.meshAnimals
dc.subject.meshAnimals, Genetically Modified
dc.subject.meshDrosophila melanogaster
dc.subject.meshDystroglycans
dc.subject.meshFemale
dc.subject.meshGenetic Association Studies
dc.subject.meshGlucosyltransferases
dc.subject.meshGlycosylation
dc.subject.meshHumans
dc.subject.meshMale
dc.subject.meshMuscle, Skeletal
dc.subject.meshMuscular Dystrophies, Limb-Girdle
dc.subject.meshMutation
dc.subject.meshPedigree
dc.subject.meshSatellite Cells, Skeletal Muscle
dc.titlePOGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern.
dc.typeresearch article
dc.type.hasVersionAM
dc.volume.number139
dspace.entity.typePublication

Files