Publication:
Outcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model.

dc.contributor.authorNuñez-Garcia, Jean C
dc.contributor.authorSánchez-Puente, Antonio
dc.contributor.authorSampedro-Gómez, Jesús
dc.contributor.authorVicente-Palacios, Victor
dc.contributor.authorJiménez-Navarro, Manuel
dc.contributor.authorOterino-Manzanas, Armando
dc.contributor.authorJiménez-Candil, Javier
dc.contributor.authorDorado-Diaz, P Ignacio
dc.contributor.authorSánchez, Pedro L
dc.date.accessioned2023-05-03T14:06:52Z
dc.date.available2023-05-03T14:06:52Z
dc.date.issued2022-05-07
dc.description.abstractBackground: The integrated approach to electrical cardioversion (EC) in atrial fibrillation (AF) is complex; candidates can resolve spontaneously while waiting for EC, and post-cardioversion recurrence is high. Thus, it is especially interesting to avoid the programming of EC in patients who would restore sinus rhythm (SR) spontaneously or present early recurrence. We have analyzed the whole elective EC of the AF process using machine-learning (ML) in order to enable a more realistic and detailed simulation of the patient flow for decision making purposes. Methods: The dataset consisted of electronic health records (EHRs) from 429 consecutive AF patients referred for EC. For analysis of the patient outcome, we considered five pathways according to restoring and maintaining SR: (i) spontaneous SR restoration, (ii) pharmacologic-cardioversion, (iii) direct-current cardioversion, (iv) 6-month AF recurrence, and (v) 6-month rhythm control. We applied ML classifiers for predicting outcomes at each pathway and compared them with the CHA2DS2-VASc and HATCH scores. Results: With the exception of pathway (iii), all ML models achieved improvements in comparison with CHA2DS2-VASc or HATCH scores (p
dc.identifier.doi10.3390/jcm11092636
dc.identifier.issn2077-0383
dc.identifier.pmcPMC9101912
dc.identifier.pmid35566761
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101912/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2077-0383/11/9/2636/pdf?version=1652161211
dc.identifier.urihttp://hdl.handle.net/10668/21282
dc.issue.number9
dc.journal.titleJournal of clinical medicine
dc.journal.titleabbreviationJ Clin Med
dc.language.isoen
dc.organizationHospital Universitario Virgen de la Victoria
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectatrial fibrillation
dc.subjectelectrical cardioversion
dc.subjectmachine-learning
dc.subjectpharmacologic cardioversion
dc.subjectrhythm control
dc.titleOutcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9101912.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format