Publication:
Discovering HIV related information by means of association rules and machine learning

dc.contributor.authorAraujo, Lourdes
dc.contributor.authorMartinez-Romo, Juan
dc.contributor.authorBisbal, Otilia
dc.contributor.authorSanchez-de-Madariaga, Ricardo
dc.contributor.authorCohort Natl Aids Network CoRIS
dc.contributor.authoraffiliation[Araujo, Lourdes] ETS Ingn Informat UNED, Languages & Informat Syst Dept, Juan Del Rosal 16, Madrid 28040, Spain
dc.contributor.authoraffiliation[Martinez-Romo, Juan] ETS Ingn Informat UNED, Languages & Informat Syst Dept, Juan Del Rosal 16, Madrid 28040, Spain
dc.contributor.authoraffiliation[Bisbal, Otilia] Hosp Univ 12 Octubre, Inst Invest I 12, Madrid, Spain
dc.contributor.authoraffiliation[Sanchez-de-Madariaga, Ricardo] Inst Salud Carlos III, Telemed & Hlth Res Unit, Madrid 28029, Spain
dc.contributor.authoraffiliation[Araujo, Lourdes] Inst Mixto UNED ISCIII MIENS, Madrid 28029, Spain
dc.contributor.authoraffiliation[Martinez-Romo, Juan] Inst Mixto UNED ISCIII MIENS, Madrid 28029, Spain
dc.contributor.authoraffiliation[Sanchez-de-Madariaga, Ricardo] Inst Mixto UNED ISCIII MIENS, Madrid 28029, Spain
dc.contributor.funderSpanish Ministry of Science and Innovation
dc.contributor.funderOBSER-MENH Project (MCIN/AEI)
dc.contributor.funderUE ("NextGenerationEU"/PRTR)
dc.contributor.funderproject RAICES (IMIENS 2022)
dc.contributor.funderInstituto de Salud Carlos III through the Red Tematica de Investigacion Cooperativa en Sida
dc.contributor.funderISCIII-Subdireccion General de Evaluacion and el Fondo Europeo de Desarrollo Regional (FEDER)
dc.date.accessioned2023-05-03T13:26:51Z
dc.date.available2023-05-03T13:26:51Z
dc.date.issued2022-10-28
dc.description.abstractAcquired immunodeficiency syndrome (AIDS) is still one of the main health problems worldwide. It is therefore essential to keep making progress in improving the prognosis and quality of life of affected patients. One way to advance along this pathway is to uncover connections between other disorders associated with HIV/AIDS-so that they can be anticipated and possibly mitigated. We propose to achieve this by using Association Rules (ARs). They allow us to represent the dependencies between a number of diseases and other specific diseases. However, classical techniques systematically generate every AR meeting some minimal conditions on data frequency, hence generating a vast amount of uninteresting ARs, which need to be filtered out. The lack of manually annotated ARs has favored unsupervised filtering, even though they produce limited results. In this paper, we propose a semi-supervised system, able to identify relevant ARs among HIV-related diseases with a minimal amount of annotated training data. Our system has been able to extract a good number of relationships between HIV-related diseases that have been previously detected in the literature but are scattered and are often little known. Furthermore, a number of plausible new relationships have shown up which deserve further investigation by qualified medical experts.
dc.identifier.doi10.1038/s41598-022-22695-y
dc.identifier.issn2045-2322
dc.identifier.unpaywallURLhttps://www.nature.com/articles/s41598-022-22695-y.pdf
dc.identifier.urihttp://hdl.handle.net/10668/19630
dc.identifier.wosID878106700061
dc.issue.number1
dc.journal.titleScientific reports
dc.journal.titleabbreviationSci rep
dc.language.isoen
dc.organizationHospital Universitario Reina Sofía
dc.organizationHospital Universitario San Cecilio
dc.organizationHospital Universitario de Jaén
dc.organizationHospital Universitario Virgen de la Victoria
dc.organizationHospital Costa del Sol
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationÁrea de Gestión Sanitaria Sur de Sevilla
dc.organizationAGS - Sur de Sevilla
dc.publisherNature portfolio
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleDiscovering HIV related information by means of association rules and machine learning
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number12
dc.wostypeArticle
dspace.entity.typePublication

Files