Publication:
An ordinal CNN approach for the assessment of neurological damage in Parkinson's disease patients

dc.contributor.authorBarbero-Gomez, Javier
dc.contributor.authorGutierrez, Pedro-Antonio
dc.contributor.authorVargas, Victor-Manuel
dc.contributor.authorVallejo-Casas, Juan-Antonio
dc.contributor.authorHervas-Martinez, Cesar
dc.contributor.authoraffiliation[Barbero-Gomez, Javier] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain
dc.contributor.authoraffiliation[Gutierrez, Pedro-Antonio] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain
dc.contributor.authoraffiliation[Vargas, Victor-Manuel] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain
dc.contributor.authoraffiliation[Hervas-Martinez, Cesar] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain
dc.contributor.authoraffiliation[Vallejo-Casas, Juan-Antonio] Univ Cordoba, Hosp Univ Reina Sofia, IMIBIC, UGC Med Nucl, Cordoba 14004, Spain
dc.contributor.funderSpanish Ministry of Economy and Competitiveness (MINECO)
dc.contributor.funder'Consejeria de Economia, Conocimiento, Empresas y Universidad' of the 'Junta de Andalucia'
dc.contributor.funderFEDER funds of the European Union
dc.contributor.funderFPI Predoctoral Program of the Spanish Ministry of Science, Innovation and Universities (MCIU)
dc.contributor.funderFPU Predoctoral Program of the MCIU
dc.date.accessioned2023-02-12T02:20:49Z
dc.date.available2023-02-12T02:20:49Z
dc.date.issued2021-05-21
dc.description.abstract3D image scans are an assessment tool for neurological damage in Parkinson's disease (PD) patients. This diagnosis process can be automatized to help medical staff through Decision Support Systems (DSSs), and Convolutional Neural Networks (CNNs) are good candidates, because they are effective when applied to spatial data. This paper proposes a 3D CNN ordinal model for assessing the level or neurological damage in PD patients. Given that CNNs need large datasets to achieve acceptable performance, a data augmentation method is adapted to work with spatial data. We consider the Ordinal Graph-based Oversampling via Shortest Paths (OGO-SP) method, which applies a gamma probability distribution for inter-class data generation. A modification of OGO-SP is proposed, the OGO-SP-beta algorithm, which applies the beta distribution for generating synthetic samples in the inter-class region, a better suited distribution when compared to gamma. The evaluation of the different methods is based on a novel 3D image dataset provided by the Hospital Universitario 'Reina Sofia' (Cordoba, Spain). We show how the ordinal methodology improves the performance with respect to the nominal one, and how OGO-SP-beta yields better performance than OGO-SP.
dc.description.versionSi
dc.identifier.citationBarbero-Gómez J, Gutiérrez PA, Vargas VM, Vallejo-Casas JA, Hervás-Martínez C. An ordinal CNN approach for the assessment of neurological damage in Parkinson’s disease patients. Expert Systems With Applications [Internet]. 1 de noviembre de 2021;182:115271
dc.identifier.doi10.1016/j.eswa.2021.115271
dc.identifier.essn1873-6793
dc.identifier.issn0957-4174
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.eswa.2021.115271
dc.identifier.urihttp://hdl.handle.net/10668/18774
dc.identifier.wosID694890100011
dc.journal.titleExpert systems with applications
dc.journal.titleabbreviationExpert syst. appl.
dc.language.isoen
dc.organizationHospital Universitario Reina Sofía
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.page.number12
dc.provenanceRealizada la curación de contenido 09/08/2024
dc.publisherElsevier
dc.relation.projectIDTIN2017-85887-C2-1-P]
dc.relation.projectIDUCO-1261651
dc.relation.projectIDPRE2018-085659
dc.relation.projectIDFPU18/00358
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0957417421007028
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectArtificial neural networks
dc.subjectOrdinal classification
dc.subjectData augmentation
dc.subjectComputer-aided diagnosis
dc.subjectNeural-network
dc.subjectDiagnosis
dc.subjectModels
dc.subject.decsAlgoritmos
dc.subject.decsCuerpo médico
dc.subject.decsEnfermedad de Parkinson
dc.subject.decsEspaña
dc.subject.decsHumanos
dc.subject.decsRedes neurales de la computación
dc.subject.meshHumans
dc.subject.meshParkinson disease
dc.subject.meshSpain
dc.subject.meshNeural networks, computer
dc.subject.meshAlgorithms
dc.subject.meshMedical staff
dc.titleAn ordinal CNN approach for the assessment of neurological damage in Parkinson's disease patients
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number182
dc.wostypeArticle
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Barbero-Gomez_AnOrdinal.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format