Publication: An ordinal CNN approach for the assessment of neurological damage in Parkinson's disease patients
dc.contributor.author | Barbero-Gomez, Javier | |
dc.contributor.author | Gutierrez, Pedro-Antonio | |
dc.contributor.author | Vargas, Victor-Manuel | |
dc.contributor.author | Vallejo-Casas, Juan-Antonio | |
dc.contributor.author | Hervas-Martinez, Cesar | |
dc.contributor.authoraffiliation | [Barbero-Gomez, Javier] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain | |
dc.contributor.authoraffiliation | [Gutierrez, Pedro-Antonio] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain | |
dc.contributor.authoraffiliation | [Vargas, Victor-Manuel] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain | |
dc.contributor.authoraffiliation | [Hervas-Martinez, Cesar] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales,Edificio Albert Einstein, Cordoba 14014, Spain | |
dc.contributor.authoraffiliation | [Vallejo-Casas, Juan-Antonio] Univ Cordoba, Hosp Univ Reina Sofia, IMIBIC, UGC Med Nucl, Cordoba 14004, Spain | |
dc.contributor.funder | Spanish Ministry of Economy and Competitiveness (MINECO) | |
dc.contributor.funder | 'Consejeria de Economia, Conocimiento, Empresas y Universidad' of the 'Junta de Andalucia' | |
dc.contributor.funder | FEDER funds of the European Union | |
dc.contributor.funder | FPI Predoctoral Program of the Spanish Ministry of Science, Innovation and Universities (MCIU) | |
dc.contributor.funder | FPU Predoctoral Program of the MCIU | |
dc.date.accessioned | 2023-02-12T02:20:49Z | |
dc.date.available | 2023-02-12T02:20:49Z | |
dc.date.issued | 2021-05-21 | |
dc.description.abstract | 3D image scans are an assessment tool for neurological damage in Parkinson's disease (PD) patients. This diagnosis process can be automatized to help medical staff through Decision Support Systems (DSSs), and Convolutional Neural Networks (CNNs) are good candidates, because they are effective when applied to spatial data. This paper proposes a 3D CNN ordinal model for assessing the level or neurological damage in PD patients. Given that CNNs need large datasets to achieve acceptable performance, a data augmentation method is adapted to work with spatial data. We consider the Ordinal Graph-based Oversampling via Shortest Paths (OGO-SP) method, which applies a gamma probability distribution for inter-class data generation. A modification of OGO-SP is proposed, the OGO-SP-beta algorithm, which applies the beta distribution for generating synthetic samples in the inter-class region, a better suited distribution when compared to gamma. The evaluation of the different methods is based on a novel 3D image dataset provided by the Hospital Universitario 'Reina Sofia' (Cordoba, Spain). We show how the ordinal methodology improves the performance with respect to the nominal one, and how OGO-SP-beta yields better performance than OGO-SP. | |
dc.description.version | Si | |
dc.identifier.citation | Barbero-Gómez J, Gutiérrez PA, Vargas VM, Vallejo-Casas JA, Hervás-Martínez C. An ordinal CNN approach for the assessment of neurological damage in Parkinson’s disease patients. Expert Systems With Applications [Internet]. 1 de noviembre de 2021;182:115271 | |
dc.identifier.doi | 10.1016/j.eswa.2021.115271 | |
dc.identifier.essn | 1873-6793 | |
dc.identifier.issn | 0957-4174 | |
dc.identifier.unpaywallURL | https://doi.org/10.1016/j.eswa.2021.115271 | |
dc.identifier.uri | http://hdl.handle.net/10668/18774 | |
dc.identifier.wosID | 694890100011 | |
dc.journal.title | Expert systems with applications | |
dc.journal.titleabbreviation | Expert syst. appl. | |
dc.language.iso | en | |
dc.organization | Hospital Universitario Reina Sofía | |
dc.organization | Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC | |
dc.page.number | 12 | |
dc.provenance | Realizada la curación de contenido 09/08/2024 | |
dc.publisher | Elsevier | |
dc.relation.projectID | TIN2017-85887-C2-1-P] | |
dc.relation.projectID | UCO-1261651 | |
dc.relation.projectID | PRE2018-085659 | |
dc.relation.projectID | FPU18/00358 | |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0957417421007028 | |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Artificial neural networks | |
dc.subject | Ordinal classification | |
dc.subject | Data augmentation | |
dc.subject | Computer-aided diagnosis | |
dc.subject | Neural-network | |
dc.subject | Diagnosis | |
dc.subject | Models | |
dc.subject.decs | Algoritmos | |
dc.subject.decs | Cuerpo médico | |
dc.subject.decs | Enfermedad de Parkinson | |
dc.subject.decs | España | |
dc.subject.decs | Humanos | |
dc.subject.decs | Redes neurales de la computación | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Parkinson disease | |
dc.subject.mesh | Spain | |
dc.subject.mesh | Neural networks, computer | |
dc.subject.mesh | Algorithms | |
dc.subject.mesh | Medical staff | |
dc.title | An ordinal CNN approach for the assessment of neurological damage in Parkinson's disease patients | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 182 | |
dc.wostype | Article | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Barbero-Gomez_AnOrdinal.pdf
- Size:
- 1.05 MB
- Format:
- Adobe Portable Document Format