Publication:
Generative Adversarial Networks for Anonymized Healthcare of Lung Cancer Patients

dc.contributor.authorGonzalez-Abril, Luis
dc.contributor.authorAngulo, Cecilio
dc.contributor.authorOrtega, Juan-Antonio
dc.contributor.authorLopez-Guerra, Jose-Luis
dc.contributor.authoraffiliation[Gonzalez-Abril, Luis] Univ Seville, Appl Econ Dept 1, Seville 41018, Spain
dc.contributor.authoraffiliation[Angulo, Cecilio] Univ Politecn Cataluna, Intelligent Data Sci & Artificial Intelligence Re, Barcelona 08034, Spain
dc.contributor.authoraffiliation[Ortega, Juan-Antonio] Univ Seville, Comp Sci Dept, E-41012 Seville, Spain
dc.contributor.authoraffiliation[Lopez-Guerra, Jose-Luis] Univ Hosp Virgen del Rocio, Dept Radiat Oncol, Seville 41013, Spain
dc.contributor.funderSpanish Ministry of Science, Innovation and Universities (AEI/FEDER, UE)
dc.contributor.funderEuropean Union
dc.date.accessioned2023-02-12T02:22:50Z
dc.date.available2023-02-12T02:22:50Z
dc.date.issued2021-09-01
dc.description.abstractThe digital twin in health care is the dynamic digital representation of the patient's anatomy and physiology through computational models which are continuously updated from clinical data. Furthermore, used in combination with machine learning technologies, it should help doctors in therapeutic path and in minimally invasive intervention procedures. Confidentiality of medical records is a very delicate issue, therefore some anonymization process is mandatory in order to maintain patients privacy. Moreover, data availability is very limited in some health domains like lung cancer treatment. Hence, generation of synthetic data conformed to real data would solve this issue. In this paper, the use of generative adversarial networks (GAN) for the generation of synthetic data of lung cancer patients is introduced as a tool to solve this problem in the form of anonymized synthetic patients. Generated synthetic patients are validated using both statistical methods, as well as by oncologists using the indirect mortality rate obtained for patients in different stages.
dc.identifier.doi10.3390/electronics10182220
dc.identifier.essn2079-9292
dc.identifier.unpaywallURLhttps://www.mdpi.com/2079-9292/10/18/2220/pdf?version=1631592240
dc.identifier.urihttp://hdl.handle.net/10668/19256
dc.identifier.wosID699445500001
dc.issue.number18
dc.journal.titleElectronics
dc.journal.titleabbreviationElectronics
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.publisherMdpi
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectdigital twin
dc.subjectanonymization
dc.subjectgenerative adversarial network
dc.subjectlung cancer
dc.titleGenerative Adversarial Networks for Anonymized Healthcare of Lung Cancer Patients
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number10
dc.wostypeArticle
dspace.entity.typePublication

Files