Publication: Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images
dc.contributor.author | Calderon-Ramirez, Saul | |
dc.contributor.author | Yang, Shengxiang | |
dc.contributor.author | Moemeni, Armaghan | |
dc.contributor.author | Colreavy-Donnelly, Simon | |
dc.contributor.author | Elizondo, David A. | |
dc.contributor.author | Oala, Luis | |
dc.contributor.author | Rodriguez-Capitan, Jorge | |
dc.contributor.author | Jimenez-Navarro, Manuel | |
dc.contributor.author | Lopez-Rubio, Ezequiel | |
dc.contributor.author | Molina-Cabello, Miguel A. | |
dc.contributor.authoraffiliation | [Calderon-Ramirez, Saul] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England | |
dc.contributor.authoraffiliation | [Yang, Shengxiang] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England | |
dc.contributor.authoraffiliation | [Colreavy-Donnelly, Simon] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England | |
dc.contributor.authoraffiliation | [Elizondo, David A.] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England | |
dc.contributor.authoraffiliation | [Calderon-Ramirez, Saul] Inst Tecnol Costa Rica, Cartago 30101, Costa Rica | |
dc.contributor.authoraffiliation | [Moemeni, Armaghan] Univ Nottingham, Sch Comp Sci, Nottingham NG8 1BB, England | |
dc.contributor.authoraffiliation | [Oala, Luis] Fraunhofer Heinrich Hertz Inst, XAI Grp, Artificial Intelligence Dept, D-10587 Berlin, Germany | |
dc.contributor.authoraffiliation | [Rodriguez-Capitan, Jorge] Hosp Univ Virgen Victoria, CIBERCV, Malaga 29010, Spain | |
dc.contributor.authoraffiliation | [Jimenez-Navarro, Manuel] Hosp Univ Virgen Victoria, CIBERCV, Malaga 29010, Spain | |
dc.contributor.authoraffiliation | [Lopez-Rubio, Ezequiel] Univ Malaga, Dept Comp Languages & Comp Sci, Malaga 29071, Spain | |
dc.contributor.authoraffiliation | [Molina-Cabello, Miguel A.] Univ Malaga, Dept Comp Languages & Comp Sci, Malaga 29071, Spain | |
dc.contributor.authoraffiliation | [Lopez-Rubio, Ezequiel] Inst Invest Biomed Malaga IBIMA, Malaga 29010, Spain | |
dc.contributor.authoraffiliation | [Molina-Cabello, Miguel A.] Inst Invest Biomed Malaga IBIMA, Malaga 29010, Spain | |
dc.contributor.funder | Universidad de Malaga | |
dc.contributor.funder | Instituto de Investigacion Biomedica de Malaga (IBIMA) | |
dc.date.accessioned | 2023-02-12T02:21:30Z | |
dc.date.available | 2023-02-12T02:21:30Z | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | In this work we implement a COVID-19 infection detection system based on chest X-ray images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data through the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches, comprising Softmax scores, Monte-Carlo dropout and deterministic uncertainty quantification. To compare the reliability of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between the uncertainty distributions of correct and incorrect estimations. This metric is statistically relevant, unlike most previously used metrics, which often ignore the distribution of the uncertainty estimations. Our test results show a significant improvement in uncertainty estimates when using unlabelled data. The best results are obtained with the use of the Monte Carlo dropout method. | |
dc.identifier.doi | 10.1109/ACCESS.2021.3085418 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.unpaywallURL | https://ieeexplore.ieee.org/ielx7/6287639/9312710/09445026.pdf | |
dc.identifier.uri | http://hdl.handle.net/10668/18976 | |
dc.identifier.wosID | 674126700001 | |
dc.journal.title | Ieee access | |
dc.journal.titleabbreviation | Ieee access | |
dc.language.iso | en | |
dc.organization | Hospital Universitario Virgen de la Victoria | |
dc.organization | Instituto de Investigación Biomédica de Málaga-IBIMA | |
dc.page.number | 85442-85454 | |
dc.publisher | Ieee-inst electrical electronics engineers inc | |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Uncertainty | |
dc.subject | Estimation | |
dc.subject | COVID-19 | |
dc.subject | X-ray imaging | |
dc.subject | Deep learning | |
dc.subject | Measurement | |
dc.subject | Measurement uncertainty | |
dc.subject | Uncertainty estimation | |
dc.subject | Coronavirus | |
dc.subject | Covid-19 | |
dc.subject | chest x-ray | |
dc.subject | computer aided diagnosis | |
dc.subject | semi-supervised deep learning | |
dc.subject | MixMatch | |
dc.title | Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 9 | |
dc.wostype | Article | |
dspace.entity.type | Publication |