Publication:
Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images

dc.contributor.authorCalderon-Ramirez, Saul
dc.contributor.authorYang, Shengxiang
dc.contributor.authorMoemeni, Armaghan
dc.contributor.authorColreavy-Donnelly, Simon
dc.contributor.authorElizondo, David A.
dc.contributor.authorOala, Luis
dc.contributor.authorRodriguez-Capitan, Jorge
dc.contributor.authorJimenez-Navarro, Manuel
dc.contributor.authorLopez-Rubio, Ezequiel
dc.contributor.authorMolina-Cabello, Miguel A.
dc.contributor.authoraffiliation[Calderon-Ramirez, Saul] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
dc.contributor.authoraffiliation[Yang, Shengxiang] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
dc.contributor.authoraffiliation[Colreavy-Donnelly, Simon] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
dc.contributor.authoraffiliation[Elizondo, David A.] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
dc.contributor.authoraffiliation[Calderon-Ramirez, Saul] Inst Tecnol Costa Rica, Cartago 30101, Costa Rica
dc.contributor.authoraffiliation[Moemeni, Armaghan] Univ Nottingham, Sch Comp Sci, Nottingham NG8 1BB, England
dc.contributor.authoraffiliation[Oala, Luis] Fraunhofer Heinrich Hertz Inst, XAI Grp, Artificial Intelligence Dept, D-10587 Berlin, Germany
dc.contributor.authoraffiliation[Rodriguez-Capitan, Jorge] Hosp Univ Virgen Victoria, CIBERCV, Malaga 29010, Spain
dc.contributor.authoraffiliation[Jimenez-Navarro, Manuel] Hosp Univ Virgen Victoria, CIBERCV, Malaga 29010, Spain
dc.contributor.authoraffiliation[Lopez-Rubio, Ezequiel] Univ Malaga, Dept Comp Languages & Comp Sci, Malaga 29071, Spain
dc.contributor.authoraffiliation[Molina-Cabello, Miguel A.] Univ Malaga, Dept Comp Languages & Comp Sci, Malaga 29071, Spain
dc.contributor.authoraffiliation[Lopez-Rubio, Ezequiel] Inst Invest Biomed Malaga IBIMA, Malaga 29010, Spain
dc.contributor.authoraffiliation[Molina-Cabello, Miguel A.] Inst Invest Biomed Malaga IBIMA, Malaga 29010, Spain
dc.contributor.funderUniversidad de Malaga
dc.contributor.funderInstituto de Investigacion Biomedica de Malaga (IBIMA)
dc.date.accessioned2023-02-12T02:21:30Z
dc.date.available2023-02-12T02:21:30Z
dc.date.issued2021-01-01
dc.description.abstractIn this work we implement a COVID-19 infection detection system based on chest X-ray images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data through the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches, comprising Softmax scores, Monte-Carlo dropout and deterministic uncertainty quantification. To compare the reliability of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between the uncertainty distributions of correct and incorrect estimations. This metric is statistically relevant, unlike most previously used metrics, which often ignore the distribution of the uncertainty estimations. Our test results show a significant improvement in uncertainty estimates when using unlabelled data. The best results are obtained with the use of the Monte Carlo dropout method.
dc.identifier.doi10.1109/ACCESS.2021.3085418
dc.identifier.issn2169-3536
dc.identifier.unpaywallURLhttps://ieeexplore.ieee.org/ielx7/6287639/9312710/09445026.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18976
dc.identifier.wosID674126700001
dc.journal.titleIeee access
dc.journal.titleabbreviationIeee access
dc.language.isoen
dc.organizationHospital Universitario Virgen de la Victoria
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number85442-85454
dc.publisherIeee-inst electrical electronics engineers inc
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectUncertainty
dc.subjectEstimation
dc.subjectCOVID-19
dc.subjectX-ray imaging
dc.subjectDeep learning
dc.subjectMeasurement
dc.subjectMeasurement uncertainty
dc.subjectUncertainty estimation
dc.subjectCoronavirus
dc.subjectCovid-19
dc.subjectchest x-ray
dc.subjectcomputer aided diagnosis
dc.subjectsemi-supervised deep learning
dc.subjectMixMatch
dc.titleImproving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number9
dc.wostypeArticle
dspace.entity.typePublication

Files