Publication: Ordinal classification of the affectation level of 3D-images in Parkinson diseases
dc.contributor.author | Durán-Rosal, Antonio M. | |
dc.contributor.author | Camacho-Cañamón, Julio | |
dc.contributor.author | Gutiérrez, Pedro Antonio | |
dc.contributor.author | Guiote Moreno, Maria Victoria | |
dc.contributor.author | Rodríguez-Cáceres, Ester | |
dc.contributor.author | Vallejo Casas, Juan Antonio | |
dc.contributor.author | Hervás-Martínez, César | |
dc.contributor.authoraffiliation | [Durán-Rosal,AM] Department of Quantitative Methods, Universidad Loyola Andalucía, Córdoba, Spain. [Camacho-Cañamón,J; Gutiérrez,PA; Hervás-Martínez,C] Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain. [Guiote Moreno,MV; Vallejo Casas,JA] UGC Medicina Nuclear, Hospital Universitario “Reina Sofía”, IMIBIC, University of Córdoba, Córdoba, Spain. [Rodríguez-Cáceres,E] Provincial TICS Team, Hospital Universitario “Reina Sofía”, IMIBIC, University of Córdoba, Córdoba, Spain. | |
dc.contributor.funder | This research has been partially supported by the “Ministerio de Economía, Industria y Competitividad” of Spain (Ref. TIN2017-85887-C2-1-P) and the “Fondo Europeo de Desarrollo Regional (FEDER) y de la Consejería de Economía, Conocimiento, Empresas y Universidad” of the “Junta de Andalucía” (Spain) (Ref. UCO-1261651). | |
dc.date.accessioned | 2022-09-02T08:34:16Z | |
dc.date.available | 2022-09-02T08:34:16Z | |
dc.date.issued | 2021-03-29 | |
dc.description.abstract | Parkinson's disease is characterised by a decrease in the density of presynaptic dopamine transporters in the striatum. Frequently, the corresponding diagnosis is performed using a qualitative analysis of the 3D-images obtained after the administration of [Formula: see text]I-ioflupane, considering a binary classification problem (absence or existence of Parkinson's disease). In this work, we propose a new methodology for classifying this kind of images in three classes depending on the level of severity of the disease in the image. To tackle this problem, we use an ordinal classifier given the natural order of the class labels. A novel strategy to perform feature selection is developed because of the large number of voxels in the image, and a method for generating synthetic images is proposed to improve the quality of the classifier. The methodology is tested on 434 studies conducted between September 2015 and January 2019, divided into three groups: 271 without alteration of the presynaptic nigrostriatal pathway, 73 with a slight alteration and 90 with severe alteration. Results confirm that the methodology improves the state-of-the-art algorithms, and that it is able to find informative voxels outside the standard regions of interest used for this problem. The differences are assessed by statistical tests which show that the proposed image ordinal classification could be considered as a decision support system in medicine. | es_ES |
dc.description.version | Yes | es_ES |
dc.identifier.citation | Durán-Rosal AM, Camacho-Cañamón J, Gutiérrez PA, Guiote Moreno MV, Rodríguez-Cáceres E, Vallejo Casas JA. Ordinal classification of the affectation level of 3D-images in Parkinson diseases. Sci Rep. 2021 Mar 29;11(1):7067. | es_ES |
dc.identifier.doi | 10.1038/s41598-021-86538-y | es_ES |
dc.identifier.essn | 2045-2322 | |
dc.identifier.pmc | PMC8007580 | |
dc.identifier.pmid | 33782476 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10668/3978 | |
dc.journal.title | Scientific Reports | |
dc.language.iso | en | |
dc.page.number | 13 p. | |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.publisherversion | https://www.nature.com/articles/s41598-021-86538-y | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Parkinson disease | es_ES |
dc.subject | Enfermedad de parkinson | es_ES |
dc.subject | Imaging, three-dimensional | es_ES |
dc.subject | Imagenología tridimensional | es_ES |
dc.subject | Image processing, computer-assisted | es_ES |
dc.subject | Procesamiento de imagen asistido por computador | es_ES |
dc.subject | Dopamine | es_ES |
dc.subject | Dopamina | es_ES |
dc.subject.mesh | Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Computing Methodologies::Image Processing, Computer-Assisted | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Diagnostic Imaging::Imaging, Three-Dimensional | es_ES |
dc.subject.mesh | Medical Subject Headings::Diseases::Nervous System Diseases::Neurodegenerative Diseases::Parkinson Disease | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithms | es_ES |
dc.title | Ordinal classification of the affectation level of 3D-images in Parkinson diseases | es_ES |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- DuranRosal_OrdinalClassification.pdf
- Size:
- 2.32 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo publicado