Publication:
Ordinal classification of the affectation level of 3D-images in Parkinson diseases

dc.contributor.authorDurán-Rosal, Antonio M.
dc.contributor.authorCamacho-Cañamón, Julio
dc.contributor.authorGutiérrez, Pedro Antonio
dc.contributor.authorGuiote Moreno, Maria Victoria
dc.contributor.authorRodríguez-Cáceres, Ester
dc.contributor.authorVallejo Casas, Juan Antonio
dc.contributor.authorHervás-Martínez, César
dc.contributor.authoraffiliation[Durán-Rosal,AM] Department of Quantitative Methods, Universidad Loyola Andalucía, Córdoba, Spain. [Camacho-Cañamón,J; Gutiérrez,PA; Hervás-Martínez,C] Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain. [Guiote Moreno,MV; Vallejo Casas,JA] UGC Medicina Nuclear, Hospital Universitario “Reina Sofía”, IMIBIC, University of Córdoba, Córdoba, Spain. [Rodríguez-Cáceres,E] Provincial TICS Team, Hospital Universitario “Reina Sofía”, IMIBIC, University of Córdoba, Córdoba, Spain.
dc.contributor.funderThis research has been partially supported by the “Ministerio de Economía, Industria y Competitividad” of Spain (Ref. TIN2017-85887-C2-1-P) and the “Fondo Europeo de Desarrollo Regional (FEDER) y de la Consejería de Economía, Conocimiento, Empresas y Universidad” of the “Junta de Andalucía” (Spain) (Ref. UCO-1261651).
dc.date.accessioned2022-09-02T08:34:16Z
dc.date.available2022-09-02T08:34:16Z
dc.date.issued2021-03-29
dc.description.abstractParkinson's disease is characterised by a decrease in the density of presynaptic dopamine transporters in the striatum. Frequently, the corresponding diagnosis is performed using a qualitative analysis of the 3D-images obtained after the administration of [Formula: see text]I-ioflupane, considering a binary classification problem (absence or existence of Parkinson's disease). In this work, we propose a new methodology for classifying this kind of images in three classes depending on the level of severity of the disease in the image. To tackle this problem, we use an ordinal classifier given the natural order of the class labels. A novel strategy to perform feature selection is developed because of the large number of voxels in the image, and a method for generating synthetic images is proposed to improve the quality of the classifier. The methodology is tested on 434 studies conducted between September 2015 and January 2019, divided into three groups: 271 without alteration of the presynaptic nigrostriatal pathway, 73 with a slight alteration and 90 with severe alteration. Results confirm that the methodology improves the state-of-the-art algorithms, and that it is able to find informative voxels outside the standard regions of interest used for this problem. The differences are assessed by statistical tests which show that the proposed image ordinal classification could be considered as a decision support system in medicine.es_ES
dc.description.versionYeses_ES
dc.identifier.citationDurán-Rosal AM, Camacho-Cañamón J, Gutiérrez PA, Guiote Moreno MV, Rodríguez-Cáceres E, Vallejo Casas JA. Ordinal classification of the affectation level of 3D-images in Parkinson diseases. Sci Rep. 2021 Mar 29;11(1):7067.es_ES
dc.identifier.doi10.1038/s41598-021-86538-yes_ES
dc.identifier.essn2045-2322
dc.identifier.pmcPMC8007580
dc.identifier.pmid33782476es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3978
dc.journal.titleScientific Reports
dc.language.isoen
dc.page.number13 p.
dc.publisherNature Publishing Groupes_ES
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-021-86538-yes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectParkinson diseasees_ES
dc.subjectEnfermedad de parkinsones_ES
dc.subjectImaging, three-dimensionales_ES
dc.subjectImagenología tridimensionales_ES
dc.subjectImage processing, computer-assistedes_ES
dc.subjectProcesamiento de imagen asistido por computadores_ES
dc.subjectDopaminees_ES
dc.subjectDopaminaes_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Image Processing, Computer-Assistedes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Diagnostic Imaging::Imaging, Three-Dimensionales_ES
dc.subject.meshMedical Subject Headings::Diseases::Nervous System Diseases::Neurodegenerative Diseases::Parkinson Diseasees_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithmses_ES
dc.titleOrdinal classification of the affectation level of 3D-images in Parkinson diseaseses_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DuranRosal_OrdinalClassification.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado