Publication:
Non-linear classifiers applied to EEG analysis for epilepsy seizure detection

dc.contributor.authorMartinez-Del-Rincon, Jesus
dc.contributor.authorSantofimia, Maria J.
dc.contributor.authordel Toro, Xavier
dc.contributor.authorBarba, Jesus
dc.contributor.authorRomero, Francisca
dc.contributor.authorNavas, Patricia
dc.contributor.authorLopez, Juan C.
dc.contributor.authoraffiliation[Santofimia, Maria J.] Univ Castilla La Mancha, Comp Architecture & Networks Grp, Paseo Univ 4, Ciudad Real, Spain
dc.contributor.authoraffiliation[Barba, Jesus] Univ Castilla La Mancha, Comp Architecture & Networks Grp, Paseo Univ 4, Ciudad Real, Spain
dc.contributor.authoraffiliation[Lopez, Juan C.] Univ Castilla La Mancha, Comp Architecture & Networks Grp, Paseo Univ 4, Ciudad Real, Spain
dc.contributor.authoraffiliation[del Toro, Xavier] Univ Castilla La Mancha, Inst Energy Res & Ind Applicat, Ciudad Real, Spain
dc.contributor.authoraffiliation[Martinez-Del-Rincon, Jesus] Queens Univ Belfast, Sch EEECS, Ctr Secure Informat Technol, Belfast BT3 9DT, Antrim, North Ireland
dc.contributor.authoraffiliation[Romero, Francisca] Hosp Reg Univ Carlos Haya, Av Carlos Haya S-N, Malaga 29010, Spain
dc.contributor.authoraffiliation[Navas, Patricia] Hosp Reg Univ Carlos Haya, Av Carlos Haya S-N, Malaga 29010, Spain
dc.contributor.funderSpanish Ministry of Economy and Competitiveness under project REBECCA
dc.contributor.funderRegional Government of Castilla-La Mancha under project SAND
dc.contributor.funderUniversity of Castilla-La Mancha RD Plan
dc.contributor.funderEuropean Social Fund
dc.date.accessioned2023-02-12T02:20:49Z
dc.date.available2023-02-12T02:20:49Z
dc.date.issued2017-11-15
dc.description.abstractThis work presents a novel approach for automatic epilepsy seizure detection based on EEG analysis that exploits the underlying non-linear nature of EEG data. In this paper, two main contributions are presented and validated: the use of non-linear classifiers through the so-called kernel trick and the proposal of a Bag-of-Words model for extracting a non-linear feature representation of the input data in an unsupervised manner. The performance of the resulting system is validated with public datasets, previously processed to remove artifacts or external disturbances, but also with private datasets recorded under realistic and non-ideal operating conditions. The use of public datasets caters for comparison purposes whereas the private one shows the performance of the system under realistic circumstances of noise, artifacts, and signals of different amplitudes. Moreover, the proposed solution has been compared to state-of-the-art works not only for pre-processed and public datasets but also with the private datasets. The mean F1-measure shows a 10% improvement over the second-best ranked method including cross-dataset experiments. The obtained results prove the robustness of the proposed solution to more realistic and variable conditions. (C) 2017 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.eswa.2017.05.052
dc.identifier.essn1873-6793
dc.identifier.issn0957-4174
dc.identifier.unpaywallURLhttps://pureadmin.qub.ac.uk/ws/files/129831045/main_v3.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18772
dc.identifier.wosID405973500009
dc.journal.titleExpert systems with applications
dc.journal.titleabbreviationExpert syst. appl.
dc.language.isoen
dc.organizationHospital Universitario Regional de Málaga
dc.page.number99-112
dc.publisherPergamon-elsevier science ltd
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectClassification algorithms
dc.subjectNon-linear classifiers
dc.subjectSVM
dc.subjectBag of words
dc.subjectWavelet
dc.subjectEpilepsy
dc.subjectSupport vector machines
dc.subjectNeural-networks
dc.subjectSignals
dc.subjectClassification
dc.subjectIdentification
dc.subjectMixture
dc.titleNon-linear classifiers applied to EEG analysis for epilepsy seizure detection
dc.typeresearch article
dc.type.hasVersionAM
dc.volume.number86
dc.wostypeArticle
dspace.entity.typePublication

Files