Publication:
Automatic frequency-based feature selection using discrete weighted evolution strategy

dc.contributor.authorNematzadeh, Hossein
dc.contributor.authorGarcia-Nieto, Jose
dc.contributor.authorNavas-Delgado, Ismael
dc.contributor.authorAldana-Montes, Jose F.
dc.contributor.authoraffiliation[Nematzadeh, Hossein] Univ Malaga, ITIS Software, Arquitecto Francisco Penalosa 18, Malaga 29071, Spain
dc.contributor.authoraffiliation[Garcia-Nieto, Jose] Univ Malaga, ITIS Software, Arquitecto Francisco Penalosa 18, Malaga 29071, Spain
dc.contributor.authoraffiliation[Navas-Delgado, Ismael] Univ Malaga, ITIS Software, Arquitecto Francisco Penalosa 18, Malaga 29071, Spain
dc.contributor.authoraffiliation[Aldana-Montes, Jose F.] Univ Malaga, ITIS Software, Arquitecto Francisco Penalosa 18, Malaga 29071, Spain
dc.contributor.authoraffiliation[Garcia-Nieto, Jose] Univ Malaga, Biomed Res Inst Malaga IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Navas-Delgado, Ismael] Univ Malaga, Biomed Res Inst Malaga IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Aldana-Montes, Jose F.] Univ Malaga, Biomed Res Inst Malaga IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Nematzadeh, Hossein] Univ Malaga, Dept Lenguajes & Ciencias Comp, Malaga, Spain
dc.contributor.authoraffiliation[Garcia-Nieto, Jose] Univ Malaga, Dept Lenguajes & Ciencias Comp, Malaga, Spain
dc.contributor.authoraffiliation[Navas-Delgado, Ismael] Univ Malaga, Dept Lenguajes & Ciencias Comp, Malaga, Spain
dc.contributor.authoraffiliation[Aldana-Montes, Jose F.] Univ Malaga, Dept Lenguajes & Ciencias Comp, Malaga, Spain
dc.contributor.authoraffiliation[Nematzadeh, Hossein] Islamic Azad Univ, Sari Branch, Dept Comp Engn, Sari, Iran
dc.contributor.funderSpanish Ministry of Science and Innovation via Grant (AEI/FEDER, UE)
dc.contributor.funderAndalusian PAIDI program
dc.contributor.funderLifeWatch-ERIC initiative ENVIRONMENTAL AND BIODIVERSITY CLIMATE CHANGE LAB (EnBiC2Lab)
dc.contributor.funderUniversidad de Malaga / CBUA
dc.date.accessioned2023-05-03T14:46:29Z
dc.date.available2023-05-03T14:46:29Z
dc.date.issued2022-10-25
dc.description.abstractHigh dimensional datasets usually suffer from curse of dimensionality which may increase the classification time and decrease the classification accuracy beyond a certain dimensionality. Thus, feature selection is used to discard redundant features for improving classification. Nonetheless, there is not a single feature selection method which could deal with all datasets. Thus, this paper proposes an automatic hybrid feature selection incorporating both filter and wrapper methods called Extended Mutual Congestion-Discrete Weighted Evolution Strategy (EMC-DWES). First, Extended Mutual Con-gestion (EMC) is proposed as a frequency-based filter ranker to discard irrelevant and redundant features using intrinsic statistics of features. Second, Discrete Weighted Evolution Strategy (DWES) is applied on the remaining features selected by EMC to perform the final automatic feature selection within a wrapper method. DWES clusters the features and applies mutation both to select the most relevant feature in each cluster at a time and to avoid selecting redundant features simultaneously through assigning greater weights to most informative clusters. The performance of EMC-DWES (in maximizing classification accuracy and minimizing the selected subset length) is investigated using benchmark high dimensional medical datasets including Covid-19. Likewise, the superiority of EMC-DWES in comparison with state-of-the-art is also evaluated in all datasets. The implementation of EMC-DWES is available on https://github.com/KhaosResearch/EMC-DWES.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
dc.identifier.doi10.1016/j.asoc.2022.109699
dc.identifier.essn1872-9681
dc.identifier.issn1568-4946
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.asoc.2022.109699
dc.identifier.urihttp://hdl.handle.net/10668/22023
dc.identifier.wosID882416400012
dc.journal.titleApplied soft computing
dc.journal.titleabbreviationAppl. soft. comput.
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.publisherElsevier
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCurse of dimensionality
dc.subjectAutomatic hybrid feature selection
dc.subjectFilter
dc.subjectWrapper
dc.subjectHigh dimensional medical datasets
dc.subjectCovid-19
dc.subjectSupport vector machine
dc.titleAutomatic frequency-based feature selection using discrete weighted evolution strategy
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number130
dc.wostypeArticle
dspace.entity.typePublication

Files