Publication: SMN1 copy-number and sequence variant analysis from next-generation sequencing data.
dc.contributor.author | Lopez-Lopez, Daniel | |
dc.contributor.author | Loucera, Carlos | |
dc.contributor.author | Carmona, Rosario | |
dc.contributor.author | Aquino, Virginia | |
dc.contributor.author | Salgado, Josefa | |
dc.contributor.author | Pasalodos, Sara | |
dc.contributor.author | Miranda, María | |
dc.contributor.author | Alonso, Ángel | |
dc.contributor.author | Dopazo, Joaquín | |
dc.date.accessioned | 2023-02-09T09:43:56Z | |
dc.date.available | 2023-02-09T09:43:56Z | |
dc.date.issued | 2020-10-14 | |
dc.description.abstract | Spinal muscular atrophy (SMA) is a severe neuromuscular autosomal recessive disorder affecting 1/10,000 live births. Most SMA patients present homozygous deletion of SMN1, while the vast majority of SMA carriers present only a single SMN1 copy. The sequence similarity between SMN1 and SMN2, and the complexity of the SMN locus makes the estimation of the SMN1 copy-number by next-generation sequencing (NGS) very difficult. Here, we present SMAca, the first python tool to detect SMA carriers and estimate the absolute SMN1 copy-number using NGS data. Moreover, SMAca takes advantage of the knowledge of certain variants specific to SMN1 duplication to also identify silent carriers. This tool has been validated with a cohort of 326 samples from the Navarra 1000 Genomes Project (NAGEN1000). SMAca was developed with a focus on execution speed and easy installation. This combination makes it especially suitable to be integrated into production NGS pipelines. Source code and documentation are available at https://www.github.com/babelomics/SMAca. | |
dc.identifier.doi | 10.1002/humu.24120 | |
dc.identifier.essn | 1098-1004 | |
dc.identifier.pmc | PMC7756735 | |
dc.identifier.pmid | 33058415 | |
dc.identifier.pubmedURL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756735/pdf | |
dc.identifier.unpaywallURL | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/humu.24120 | |
dc.identifier.uri | http://hdl.handle.net/10668/16425 | |
dc.issue.number | 12 | |
dc.journal.title | Human mutation | |
dc.journal.titleabbreviation | Hum Mutat | |
dc.language.iso | en | |
dc.organization | Fundación Pública Andaluz Progreso y Salud-FPS | |
dc.organization | Instituto de Biomedicina de Sevilla-IBIS | |
dc.organization | Hospital Universitario Virgen del Rocío | |
dc.page.number | 2073-2077 | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Research Support, Non-U.S. Gov't | |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | SMA | |
dc.subject | next generation sequencing | |
dc.subject | pipeline | |
dc.subject.mesh | Base Sequence | |
dc.subject.mesh | DNA Copy Number Variations | |
dc.subject.mesh | High-Throughput Nucleotide Sequencing | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Reproducibility of Results | |
dc.subject.mesh | Software | |
dc.subject.mesh | Survival of Motor Neuron 1 Protein | |
dc.title | SMN1 copy-number and sequence variant analysis from next-generation sequencing data. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 41 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1