Publication:
Comparative analysis of affected and unaffected areas of systemic sclerosis skin biopsies by high-throughput proteomic approaches.

dc.contributor.authorChairta, Paraskevi
dc.contributor.authorNicolaou, Paschalis
dc.contributor.authorSokratous, Kleitos
dc.contributor.authorGalant, Christine
dc.contributor.authorHoussiau, Frédéric
dc.contributor.authorOulas, Anastasis
dc.contributor.authorSpyrou, George M
dc.contributor.authorAlarcon-Riquelme, Marta E
dc.contributor.authorLauwerys, Bernard R
dc.contributor.authorChristodoulou, Kyproula
dc.date.accessioned2023-02-08T14:49:32Z
dc.date.available2023-02-08T14:49:32Z
dc.date.issued2020-05-07
dc.description.abstractPathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.
dc.identifier.doi10.1186/s13075-020-02196-x
dc.identifier.essn1478-6362
dc.identifier.pmcPMC7206756
dc.identifier.pmid32381114
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206756/pdf
dc.identifier.unpaywallURLhttps://doi.org/10.1186/s13075-020-02196-x
dc.identifier.urihttp://hdl.handle.net/10668/15528
dc.issue.number1
dc.journal.titleArthritis research & therapy
dc.journal.titleabbreviationArthritis Res Ther
dc.language.isoen
dc.organizationCentro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica-GENYO
dc.page.number107
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBiomarkers
dc.subjectHuman
dc.subjectMass spectrometry
dc.subjectProteomics
dc.subjectRheumatology
dc.subjectScleroderma
dc.subjectSkin biopsy
dc.subjectSystemic sclerosis
dc.subject.meshBiomarkers
dc.subject.meshBiopsy
dc.subject.meshHigh-Throughput Screening Assays
dc.subject.meshHumans
dc.subject.meshProteomics
dc.subject.meshScleroderma, Systemic
dc.subject.meshSkin
dc.titleComparative analysis of affected and unaffected areas of systemic sclerosis skin biopsies by high-throughput proteomic approaches.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number22
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7206756.pdf
Size:
820.41 KB
Format:
Adobe Portable Document Format