Publication:
Gene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using ExpHunterSuite.

dc.contributor.authorJabato, Fernando M
dc.contributor.authorCórdoba-Caballero, José
dc.contributor.authorRojano, Elena
dc.contributor.authorRomá-Mateo, Carlos
dc.contributor.authorSanz, Pascual
dc.contributor.authorPérez, Belén
dc.contributor.authorGallego, Diana
dc.contributor.authorSeoane, Pedro
dc.contributor.authorRanea, Juan A G
dc.contributor.authorPerkins, James R
dc.date.accessioned2023-02-09T11:44:18Z
dc.date.available2023-02-09T11:44:18Z
dc.date.issued2021-07-23
dc.description.abstractHigh-throughput gene expression analysis is widely used. However, analysis is not straightforward. Multiple approaches should be applied and methods to combine their results implemented and investigated. We present methodology for the comprehensive analysis of expression data, including co-expression module detection and result integration via data-fusion, threshold based methods, and a Naïve Bayes classifier trained on simulated data. Application to rare-disease model datasets confirms existing knowledge related to immune cell infiltration and suggest novel hypotheses including the role of calcium channels. Application to simulated and spike-in experiments shows that combining multiple methods using consensus and classifiers leads to optimal results. ExpHunter Suite is implemented as an R/Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite . It can be applied to model and non-model organisms and can be run modularly in R; it can also be run from the command line, allowing scalability with large datasets. Code and reports for the studies are available from https://github.com/fmjabato/ExpHunterSuiteExamples .
dc.identifier.doi10.1038/s41598-021-94343-w
dc.identifier.essn2045-2322
dc.identifier.pmcPMC8302605
dc.identifier.pmid34301987
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302605/pdf
dc.identifier.unpaywallURLhttps://www.nature.com/articles/s41598-021-94343-w.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18254
dc.issue.number1
dc.journal.titleScientific reports
dc.journal.titleabbreviationSci Rep
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number15062
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, N.I.H., Extramural
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshAlgorithms
dc.subject.meshArabidopsis
dc.subject.meshBayes Theorem
dc.subject.meshCalcium Channels
dc.subject.meshGene Expression Profiling
dc.subject.meshGene Expression Regulation
dc.subject.meshHumans
dc.subject.meshRNA-Seq
dc.subject.meshRare Diseases
dc.subject.meshSoftware
dc.titleGene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using ExpHunterSuite.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC8302605.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format