Publication:
Evaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterials.

dc.contributor.authorIonescu, Ana Maria
dc.contributor.authorChato-Astrain, Jesus
dc.contributor.authorCardona Perez, Juan de la Cruz
dc.contributor.authorCampos, Fernando
dc.contributor.authorPerez Gomez, Maria
dc.contributor.authorAlaminos, Miguel
dc.contributor.authorGarzon Bello, Ingrid
dc.contributor.funderMinistry of Science, Innovation and Universities of Spain
dc.contributor.funderInstituto de Salud Carlos III (ISCIII)
dc.contributor.funderFundación Benéfica Anticáncer San Francisco Javier y Santa Cándida, Granada, Spain.
dc.contributor.funderConsejería de Salud y Familias, Junta de Andalucía, Spain
dc.contributor.funderUniversity of Granada;
dc.contributor.funderEuroNanoMed framework, EU
dc.contributor.funderOTRI
dc.date.accessioned2023-02-08T14:49:37Z
dc.date.available2023-02-08T14:49:37Z
dc.date.issued2020-04-24
dc.description.abstractRecent generation of bioengineered human skin allowed the efficient treatment of patients with severe skin defects. However, the optical and biomechanical properties of these models are not known. Three models of bioengineered human skin based on fibrin-agarose biomaterials (acellular, dermal skin substitutes, and complete dermoepidermal skin substitutes) were generated and analyzed. Optical and biomechanical properties of these artificial human skin substitutes were investigated using the inverse adding-doubling method and tensile tests, respectively. The analysis of the optical properties revealed that the model that most resembled the optical behavior of the native human skin in terms of absorption and scattering properties was the dermoepidermal human skin substitutes after 7 to 14 days in culture. The time-course evaluation of the biomechanical parameters showed that the dermoepidermal substitutes displayed significant higher values than acellular and dermal skin substitutes for all parameters analyzed and did not differ from the control skin for traction deformation, stress, and strain at fracture break. We demonstrate the crucial role of the cells from a physical point of view, confirming that a bioengineered dermoepidermal human skin substitute based on fibrin-agarose biomaterials is able to fulfill the minimal requirements for skin transplants for future clinical use at early stages of in vitro development.
dc.description.sponsorshipThis study was partially supported by research projects PGC2018-101904-A-I00 from Ministry of Science, Innovation and Universities of Spain, and Award No. AC17/00013 (NanoGSkin project) by Instituto de Salud Carlos III (ISCIII), Ministry of Science, Innovation and Universities, through AES 2017 and within the EuroNanoMed framework, EU; by A.TEP.280.UGR18 from University of Granada; by PE-0395-2019 from Consejería de Salud y Familias, Junta de Andalucía, Spain; by OTRI.35A-07, and by Fundación Benéfica Anticáncer San Francisco Javier y Santa Cándida, Granada, Spain.
dc.description.versionSi
dc.identifier.citationIonescu AM, Chato-Astrain J, Cardona Pérez JC, Campos F, Pérez Gómez M, Alaminos M, et al. Evaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterials. J Biomed Opt. 2020 May;25(5):1-16.
dc.identifier.doi10.1117/1.JBO.25.5.055002
dc.identifier.essn1560-2281
dc.identifier.pmcPMC7203517
dc.identifier.pmid32383372
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203517/pdf
dc.identifier.unpaywallURLhttps://doi.org/10.1117/1.jbo.25.5.055002
dc.identifier.urihttp://hdl.handle.net/10668/15531
dc.issue.number5
dc.journal.titleJournal of biomedical optics
dc.journal.titleabbreviationJ Biomed Opt
dc.language.isoen
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.number17
dc.publisherSPIE - International Society for Optical Engineering
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDPGC2018-101904-A-I00
dc.relation.projectIDAC17/00013
dc.relation.projectIDPE-0395-2019
dc.relation.projectID35A-07
dc.relation.publisherversionhttps://doi.org/10.1117/1.JBO.25.5.055002
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectabsorption
dc.subjectbioengineered skin
dc.subjectfibrin-agarose biomaterial
dc.subjectoptical properties
dc.subjectscattering
dc.subject.decsFibrina
dc.subject.decsHumanos
dc.subject.decsIngeniería de tejidos
dc.subject.decsMateriales biocompatibles
dc.subject.decsPiel
dc.subject.decsSefarosa
dc.subject.meshBiocompatible Materials
dc.subject.meshFibrin
dc.subject.meshHumans
dc.subject.meshSepharose
dc.subject.meshSkin
dc.subject.meshTissue Engineering
dc.titleEvaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterials.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number25
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7203517.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format