Publication:
A new approach for multi-view gait recognition on unconstrained paths

dc.contributor.authorLopez-Fernandez, D.
dc.contributor.authorMadrid-Cuevas, F. J.
dc.contributor.authorCarmona-Poyato, A.
dc.contributor.authorMunoz-Salinas, R.
dc.contributor.authorMedina-Carnicer, R.
dc.contributor.authoraffiliation[Lopez-Fernandez, D.] Univ Cordoba, Dept Comp & Numer Anal, Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.authoraffiliation[Madrid-Cuevas, F. J.] Univ Cordoba, Dept Comp & Numer Anal, Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.authoraffiliation[Carmona-Poyato, A.] Univ Cordoba, Dept Comp & Numer Anal, Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.authoraffiliation[Munoz-Salinas, R.] Univ Cordoba, Dept Comp & Numer Anal, Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.authoraffiliation[Medina-Carnicer, R.] Univ Cordoba, Dept Comp & Numer Anal, Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.funderScience and Technology Ministry of Spain
dc.contributor.funderFEDER
dc.date.accessioned2023-02-12T02:20:59Z
dc.date.available2023-02-12T02:20:59Z
dc.date.issued2016-07-01
dc.description.abstractDirection changes cause difficulties for most of the gait recognition systems, due to appearance changes. We propose a new approach for multi-view gait recognition, which focuses on recognizing people walking on unconstrained (curved and straight) paths. To this effect, we present a new rotation invariant gait descriptor which is based on 3D angular analysis of the movement of the subject. Our method does not require the sequence to be split into gait cycles, and is able to provide a response before processing the whole sequence. A Support Vector Machine is used for classifying, and a sliding temporal window with majority vote policy is used to reinforce the classification results. The proposed approach has been experimentally validated on "AVA Multi-View Dataset" and "Kyushu University 4D Gait Database" and compared with related state-of-art work. Experimental results demonstrate the effectiveness of this approach in the problem of gait recognition on unconstrained paths. (C) 2016 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.jvcir.2016.03.020
dc.identifier.essn1095-9076
dc.identifier.issn1047-3203
dc.identifier.unpaywallURLhttp://helvia.uco.es/xmlui/bitstream/10396/15776/3/jvci_single-1.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18830
dc.identifier.wosID377149100034
dc.journal.titleJournal of visual communication and image representation
dc.journal.titleabbreviationJ. vis. commun. image represent.
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.page.number396-406
dc.publisherAcademic press inc elsevier science
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGait recognition
dc.subjectUnconstrained paths
dc.subjectRotation-invariant
dc.subjectAngular analysis
dc.subjectCurved trajectories
dc.subject3D reconstruction
dc.subjectIdentification
dc.subjectImage
dc.subjectMotion
dc.titleA new approach for multi-view gait recognition on unconstrained paths
dc.typeresearch article
dc.type.hasVersionSMUR
dc.volume.number38
dc.wostypeArticle
dspace.entity.typePublication

Files