Publication: Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180].
dc.contributor.author | De-Brouwer, Edward | |
dc.contributor.author | Becker, Thijs | |
dc.contributor.author | Moreau, Yves | |
dc.contributor.author | Havrdova, Eva Kubala | |
dc.contributor.author | Trojano, Maria | |
dc.contributor.author | Eichau, Sara | |
dc.contributor.author | Ozakbas, Serkan | |
dc.contributor.author | Onofrj, Marco | |
dc.contributor.author | Grammond, Pierre | |
dc.contributor.author | Kuhle, Jens | |
dc.contributor.author | Kappos, Ludwig | |
dc.contributor.author | Sola, Patrizia | |
dc.contributor.author | Cartechini, Elisabetta | |
dc.contributor.author | Lechner-Scott, Jeannette | |
dc.contributor.author | Alroughani, Raed | |
dc.contributor.author | Gerlach, Oliver | |
dc.contributor.author | Kalincik, Tomas | |
dc.contributor.author | Granella, Franco | |
dc.contributor.author | Grand'Maison, Francois | |
dc.contributor.author | Bergamaschi, Roberto | |
dc.contributor.author | Sa, Maria Jose | |
dc.contributor.author | Van-Wijmeersch, Bart | |
dc.contributor.author | Soysal, Aysun | |
dc.contributor.author | Sanchez-Menoyo, Jose Luis | |
dc.contributor.author | Solaro, Claudio | |
dc.contributor.author | Boz, Cavit | |
dc.contributor.author | Iuliano, Gerardo | |
dc.contributor.author | Buzzard, Katherine | |
dc.contributor.author | Aguera-Morales, Eduardo | |
dc.contributor.author | Terzi, Murat | |
dc.contributor.author | Trivio, Tamara Castillo | |
dc.contributor.author | Spitaleri, Daniele | |
dc.contributor.author | Van-Pesch, Vincent | |
dc.contributor.author | Shaygannejad, Vahid | |
dc.contributor.author | Moore, Fraser | |
dc.contributor.author | Oreja-Guevara, Celia | |
dc.contributor.author | Maimone, Davide | |
dc.contributor.author | Gouider, Riadh | |
dc.contributor.author | Csepany, Tunde | |
dc.contributor.author | Ramo-Tello, Cristina | |
dc.contributor.author | Peeters, Liesbet | |
dc.date.accessioned | 2023-05-03T14:53:31Z | |
dc.date.available | 2023-05-03T14:53:31Z | |
dc.date.issued | 2021-06-17 | |
dc.description.abstract | Background and objectives: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. Methods: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. Results: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. Conclusions: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS. | |
dc.description.version | Si | |
dc.identifier.citation | De Brouwer E, Becker T, Moreau Y, Havrdova EK, Trojano M, Eichau S, et al. Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression. Comput Methods Programs Biomed. 2021 Sep;208:106180 | |
dc.identifier.doi | 10.1016/j.cmpb.2021.106479 | |
dc.identifier.essn | 1872-7565 | |
dc.identifier.pmid | 34749246 | |
dc.identifier.unpaywallURL | https://documentserver.uhasselt.be//bitstream/1942/36136/1/1-s2.0-S0169260721005538-main.pdf | |
dc.identifier.uri | http://hdl.handle.net/10668/22137 | |
dc.journal.title | Computer methods and programs in biomedicine | |
dc.journal.titleabbreviation | Comput Methods Programs Biomed | |
dc.language.iso | en | |
dc.organization | Hospital Universitario Reina Sofía | |
dc.page.number | 1 | |
dc.provenance | Realizada la curación de contenido 07/07/2025 | |
dc.publisher | Elsevier | |
dc.pubmedtype | Research article | |
dc.relation.publisherversion | https://linkinghub.elsevier.com/retrieve/pii/S0169-2607(21)00254-6 | |
dc.rights.accessRights | Restricted Access | |
dc.subject | Disability progression | |
dc.subject | Electronic health records | |
dc.subject | Longitudinal data | |
dc.subject | Multiple sclerosis | |
dc.subject | Real-world data | |
dc.subject | Recurrent neural networks | |
dc.subject.decs | Esclerosis múltiple | |
dc.subject.decs | Inteligencia artificial | |
dc.subject.decs | Redes neuronales recurrentes | |
dc.subject.decs | Regresión de la discapacidad | |
dc.subject.decs | Datos del mundo real | |
dc.subject.decs | Registro de pacientes clínicos | |
dc.subject.mesh | Precision Medicine | |
dc.subject.mesh | Neural Networks, Computer | |
dc.subject.mesh | Machine Learning | |
dc.subject.mesh | Disease Progression | |
dc.subject.mesh | Information Sources | |
dc.title | Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180]. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 213 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- RISalud_Accesorestringido.pdf
- Size:
- 93.39 KB
- Format:
- Adobe Portable Document Format