Publication:
Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180].

dc.contributor.authorDe-Brouwer, Edward
dc.contributor.authorBecker, Thijs
dc.contributor.authorMoreau, Yves
dc.contributor.authorHavrdova, Eva Kubala
dc.contributor.authorTrojano, Maria
dc.contributor.authorEichau, Sara
dc.contributor.authorOzakbas, Serkan
dc.contributor.authorOnofrj, Marco
dc.contributor.authorGrammond, Pierre
dc.contributor.authorKuhle, Jens
dc.contributor.authorKappos, Ludwig
dc.contributor.authorSola, Patrizia
dc.contributor.authorCartechini, Elisabetta
dc.contributor.authorLechner-Scott, Jeannette
dc.contributor.authorAlroughani, Raed
dc.contributor.authorGerlach, Oliver
dc.contributor.authorKalincik, Tomas
dc.contributor.authorGranella, Franco
dc.contributor.authorGrand'Maison, Francois
dc.contributor.authorBergamaschi, Roberto
dc.contributor.authorSa, Maria Jose
dc.contributor.authorVan-Wijmeersch, Bart
dc.contributor.authorSoysal, Aysun
dc.contributor.authorSanchez-Menoyo, Jose Luis
dc.contributor.authorSolaro, Claudio
dc.contributor.authorBoz, Cavit
dc.contributor.authorIuliano, Gerardo
dc.contributor.authorBuzzard, Katherine
dc.contributor.authorAguera-Morales, Eduardo
dc.contributor.authorTerzi, Murat
dc.contributor.authorTrivio, Tamara Castillo
dc.contributor.authorSpitaleri, Daniele
dc.contributor.authorVan-Pesch, Vincent
dc.contributor.authorShaygannejad, Vahid
dc.contributor.authorMoore, Fraser
dc.contributor.authorOreja-Guevara, Celia
dc.contributor.authorMaimone, Davide
dc.contributor.authorGouider, Riadh
dc.contributor.authorCsepany, Tunde
dc.contributor.authorRamo-Tello, Cristina
dc.contributor.authorPeeters, Liesbet
dc.date.accessioned2023-05-03T14:53:31Z
dc.date.available2023-05-03T14:53:31Z
dc.date.issued2021-06-17
dc.description.abstractBackground and objectives: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. Methods: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. Results: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. Conclusions: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.
dc.description.versionSi
dc.identifier.citationDe Brouwer E, Becker T, Moreau Y, Havrdova EK, Trojano M, Eichau S, et al. Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression. Comput Methods Programs Biomed. 2021 Sep;208:106180
dc.identifier.doi10.1016/j.cmpb.2021.106479
dc.identifier.essn1872-7565
dc.identifier.pmid34749246
dc.identifier.unpaywallURLhttps://documentserver.uhasselt.be//bitstream/1942/36136/1/1-s2.0-S0169260721005538-main.pdf
dc.identifier.urihttp://hdl.handle.net/10668/22137
dc.journal.titleComputer methods and programs in biomedicine
dc.journal.titleabbreviationComput Methods Programs Biomed
dc.language.isoen
dc.organizationHospital Universitario Reina Sofía
dc.page.number1
dc.provenanceRealizada la curación de contenido 07/07/2025
dc.publisherElsevier
dc.pubmedtypeResearch article
dc.relation.publisherversionhttps://linkinghub.elsevier.com/retrieve/pii/S0169-2607(21)00254-6
dc.rights.accessRightsRestricted Access
dc.subjectDisability progression
dc.subjectElectronic health records
dc.subjectLongitudinal data
dc.subjectMultiple sclerosis
dc.subjectReal-world data
dc.subjectRecurrent neural networks
dc.subject.decsEsclerosis múltiple
dc.subject.decsInteligencia artificial
dc.subject.decsRedes neuronales recurrentes
dc.subject.decsRegresión de la discapacidad
dc.subject.decsDatos del mundo real
dc.subject.decsRegistro de pacientes clínicos
dc.subject.meshPrecision Medicine
dc.subject.meshNeural Networks, Computer
dc.subject.meshMachine Learning
dc.subject.meshDisease Progression
dc.subject.meshInformation Sources
dc.titleLongitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180].
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number213
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RISalud_Accesorestringido.pdf
Size:
93.39 KB
Format:
Adobe Portable Document Format