Publication:
Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium.

dc.contributor.authorSmart, Sophie E
dc.contributor.authorAgbedjro, Deborah
dc.contributor.authorPardiñas, Antonio F
dc.contributor.authorAjnakina, Olesya
dc.contributor.authorAlameda, Luis
dc.contributor.authorAndreassen, Ole A
dc.contributor.authorBarnes, Thomas R E
dc.contributor.authorBerardi, Domenico
dc.contributor.authorCamporesi, Sara
dc.contributor.authorCleusix, Martine
dc.contributor.authorConus, Philippe
dc.contributor.authorCrespo-Facorro, Benedicto
dc.contributor.authorD'Andrea, Giuseppe
dc.contributor.authorDemjaha, Arsime
dc.contributor.authorDi-Forti, Marta
dc.contributor.authorDo, Kim
dc.contributor.authorDoody, Gillian
dc.contributor.authorEap, Chin B
dc.contributor.authorFerchiou, Aziz
dc.contributor.authorGuidi, Lorenzo
dc.contributor.authorHomman, Lina
dc.contributor.authorJenni, Raoul
dc.contributor.authorJoyce, Eileen
dc.contributor.authorKassoumeri, Laura
dc.contributor.authorLastrina, Ornella
dc.contributor.authorMelle, Ingrid
dc.contributor.authorMorgan, Craig
dc.contributor.authorO'Neill, Francis A
dc.contributor.authorPignon, Baptiste
dc.contributor.authorRestellini, Romeo
dc.contributor.authorRichard, Jean-Romain
dc.contributor.authorSimonsen, Carmen
dc.contributor.authorŠpaniel, Filip
dc.contributor.authorSzöke, Andrei
dc.contributor.authorTarricone, Ilaria
dc.contributor.authorTortelli, Andrea
dc.contributor.authorÜçok, Alp
dc.contributor.authorVazquez-Bourgon, Javier
dc.contributor.authorMurray, Robin M
dc.contributor.authorWalters, James T R
dc.contributor.authorStahl, Daniel
dc.contributor.authorMacCabe, James H
dc.contributor.funderEuropean Union (EU)
dc.contributor.funderEuropean Community
dc.contributor.funderInstituto de Salud Carlos III Spanish Government
dc.contributor.funderEuropean Union (EU) Spanish Government
dc.date.accessioned2023-05-03T15:17:16Z
dc.date.available2023-05-03T15:17:16Z
dc.date.issued2022-10-12
dc.description.abstractOur aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR.
dc.description.versionSi
dc.identifier.citationSmart SE, Agbedjro D, Pardiñas AF, Ajnakina O, Alameda L, Andreassen OA, et al. Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium. Schizophr Res. 2022 Dec;250:1-9.
dc.identifier.doi10.1016/j.schres.2022.09.009
dc.identifier.essn1573-2509
dc.identifier.pmcPMC9834064
dc.identifier.pmid36242784
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834064/pdf
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.schres.2022.09.009
dc.identifier.urihttp://hdl.handle.net/10668/22510
dc.journal.titleSchizophrenia research
dc.journal.titleabbreviationSchizophr Res
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.page.number1-9
dc.provenanceRealizada la curación de contenido 03/04/2025
dc.publisherElsevier BV
dc.pubmedtypeJournal Article
dc.relation.projectIDHEALTH-F2-2010-241909
dc.relation.projectIDHEALTH-F2-2010-241909
dc.relation.projectIDHEALTH-F2-2009-241909
dc.relation.projectIDFIS 00/3095
dc.relation.projectIDPI020499
dc.relation.projectIDPI050427
dc.relation.projectIDPI060507
dc.relation.projectIDSAF2016-76046-R
dc.relation.projectIDSAF2013-46292-R
dc.relation.publisherversionhttps://linkinghub.elsevier.com/retrieve/pii/S0920-9964(22)00342-5
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectFirst episode psychosis
dc.subjectMachine learning
dc.subjectPrediction modelling
dc.subjectProspective longitudinal cohort
dc.subjectStratification
dc.subjectTreatment resistant schizophrenia
dc.subject.decsTrastornos psicóticos
dc.subject.decsTerapéutica
dc.subject.decsEducación
dc.subject.decsOptimismo
dc.subject.decsSensibilidad y especificidad
dc.subject.decsRiesgo
dc.subject.decsPacientes
dc.subject.decsAntipsicóticos
dc.subject.meshHumans
dc.subject.meshAntipsychotic Agents
dc.subject.meshPrognosis
dc.subject.meshProspective Studies
dc.subject.meshPsychotic Disorders
dc.subject.meshEducational Status
dc.titleClinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number250
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Smart_ClinicalPredictors.pdf
Size:
622.93 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Smart_ClinicalPredictors_MaterialSuplementario.docx
Size:
18.14 MB
Format:
Microsoft Word XML