Publication:
On statistical convergence and strong Cesaro convergence by moduli

dc.contributor.authorLeon-Saavedra, Fernando
dc.contributor.authorListan-Garcia, M. del Carmen
dc.contributor.authorPerez Fernandez, Francisco Javier
dc.contributor.authorRomero de la Rosa, Maria Pilar
dc.contributor.authoraffiliation[Leon-Saavedra, Fernando] Univ Cadiz, Dept Math, Jerez de la Frontera, Spain
dc.contributor.authoraffiliation[Romero de la Rosa, Maria Pilar] Univ Cadiz, Dept Math, Jerez de la Frontera, Spain
dc.contributor.authoraffiliation[Listan-Garcia, M. del Carmen] Univ Cadiz, Dept Math, Puerto Real, Spain
dc.contributor.authoraffiliation[Perez Fernandez, Francisco Javier] Univ Cadiz, Dept Math, Puerto Real, Spain
dc.contributor.funderJunta de Andalucia
dc.contributor.funderPlan Propio de la Universidad de Cadiz
dc.contributor.funderFEDER/Ministerio de Ciencia, Innovacion y Universidades Agencia Estatal de Investigacion
dc.date.accessioned2023-02-12T02:22:12Z
dc.date.available2023-02-12T02:22:12Z
dc.date.issued2019-11-14
dc.description.abstractIn this paper we will establish a result by Connor, Khan and Orhan (Analysis 8:47-63, 1988; Publ. Math. (Debr.) 76:77-88, 2010) in the framework of the statistical convergence and the strong Cesaro convergence defined by a modulus function f. Namely, for every modulus function f, we will prove that a f-strongly Cesaro convergent sequence is always f-statistically convergent and uniformly integrable. The converse of this result is not true even for bounded sequences. We will characterize analytically the modulus functions f for which the converse is true. We will prove that these modulus functions are those for which the statistically convergent sequences are f-statistically convergent, that is, we show that Connor-Khan-Orhan's result is sharp in this sense.
dc.identifier.doi10.1186/s13660-019-2252-y
dc.identifier.issn1029-242X
dc.identifier.unpaywallURLhttps://doi.org/10.1186/s13660-019-2252-y
dc.identifier.urihttp://hdl.handle.net/10668/19135
dc.identifier.wosID497690500005
dc.issue.number1
dc.journal.titleJournal of inequalities and applications
dc.journal.titleabbreviationJ. inequal. appl.
dc.language.isoen
dc.organizationÁrea de Gestión Sanitaria de Jerez, Costa Noroeste y Sierra de Cádiz
dc.organizationAGS - Jerez, Costa Noroeste y Sierra de Cáidz
dc.publisherSpringeropen
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectStatistical convergence
dc.subjectStrong Cesaro convergence
dc.subjectModulus function
dc.subjectUniformly bounded sequence
dc.subjectApproximation theorems
dc.subjectKorovkin
dc.subjectSummability
dc.subjectSequences
dc.subjectSpaces
dc.titleOn statistical convergence and strong Cesaro convergence by moduli
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number2019
dc.wostypeArticle
dspace.entity.typePublication

Files