Publication:
Evaluation of convolutional neural networks for the classification of falls from heterogeneous thermal vision sensors

dc.contributor.authorAngel Lopez-Medina, Miguel
dc.contributor.authorEspinilla, Macarena
dc.contributor.authorNugent, Chris
dc.contributor.authorMedina Quero, Javier
dc.contributor.authoraffiliation[Angel Lopez-Medina, Miguel] Council Hlth Andalucian Hlth Serv, Av Constituc 18, Seville 41071, Spain
dc.contributor.authoraffiliation[Espinilla, Macarena] Univ Jaen, Dept Comp Sci, Campus Las Lagunillas, Jaen, Spain
dc.contributor.authoraffiliation[Medina Quero, Javier] Univ Jaen, Dept Comp Sci, Campus Las Lagunillas, Jaen, Spain
dc.contributor.authoraffiliation[Nugent, Chris] Ulster Univ, Sch Comp, Coleraine, Londonderry, North Ireland
dc.contributor.funderREMIND project Marie Sklodowska-Curie EU Framework for Research and Innovation Horizon 2020
dc.contributor.funderSpanish Government
dc.contributor.funderUniversity of Jaen
dc.date.accessioned2023-02-12T02:22:03Z
dc.date.available2023-02-12T02:22:03Z
dc.date.issued2020-05-01
dc.description.abstractThe automatic detection of falls within environments where sensors are deployed has attracted considerable research interest due to the prevalence and impact of falling people, especially the elderly. In this work, we analyze the capabilities of non-invasive thermal vision sensors to detect falls using several architectures of convolutional neural networks. First, we integrate two thermal vision sensors with different capabilities: (1) low resolution with a wide viewing angle and (2) high resolution with a central viewing angle. Second, we include fuzzy representation of thermal information. Third, we enable the generation of a large data set from a set of few images using ad hoc data augmentation, which increases the original data set size, generating new synthetic images. Fourth, we define three types of convolutional neural networks which are adapted for each thermal vision sensor in order to evaluate the impact of the architecture on fall detection performance. The results show encouraging performance in single-occupancy contexts. In multiple occupancy, the low-resolution thermal vision sensor with a wide viewing angle obtains better performance and reduction of learning time, in comparison with the high-resolution thermal vision sensors with a central viewing angle.
dc.identifier.doi10.1177/1550147720920485
dc.identifier.issn1550-1477
dc.identifier.unpaywallURLhttps://doi.org/10.1177/1550147720920485
dc.identifier.urihttp://hdl.handle.net/10668/19100
dc.identifier.wosID536843200001
dc.issue.number5
dc.journal.titleInternational journal of distributed sensor networks
dc.journal.titleabbreviationInt. j. distrib. sens. netw.
dc.language.isoen
dc.organizationConsejería de Salud de la Junta de Andalucía
dc.publisherSage publications inc
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectThermal vision sensors
dc.subjectfall detection
dc.subjectconvolutional neural networks
dc.subjectfuzzy processing
dc.subjectImpulse noise-reduction
dc.subjectSystem
dc.titleEvaluation of convolutional neural networks for the classification of falls from heterogeneous thermal vision sensors
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number16
dc.wostypeArticle
dspace.entity.typePublication

Files