Publication:
Minimizing Selection and Classification Biases. Comment on "Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing".

dc.contributor.authorMartos-Perez, Francisco
dc.contributor.authorGómez-Huelgas, Ricardo
dc.contributor.authorMartin-Escalante, Maria Dolores
dc.contributor.authorCasas-Rojo, Jose Manuel
dc.date.accessioned2023-02-09T11:38:39Z
dc.date.available2023-02-09T11:38:39Z
dc.date.issued2021-05-26
dc.description.abstractThe paper by Izquierdo et al [1], published in the recent issue of the Journal of Medical Internet Research, employed a combination of conventional and machine learning tools to describe the clinical characteristics of patients with COVID-19 and the factors that predict intensive care unit (ICU) admission. We would like to make some comments about its design. The authors should have provided the proportion of patients with a positive microbiological diagnosis. If the artificial intelligence software’s capacity for retrieving this information is limited in some way, this should be explained. The classification bias introduced by the lack of microbiological confirmation may have been significant since the study includes patients from January 1, 2020. Although some undiagnosed cases have likely been present prior to the first declared case (March 1, 2020) [2] in Castilla-La Mancha, it is improbable that there were many of them.
dc.description.versionSi
dc.identifier.citationMartos Pérez F, Gomez Huelgas R, Martín Escalante MD, Casas Rojo JM. Minimizing Selection and Classification Biases. Comment on "Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing". J Med Internet Res. 2021 May 26;23(5):e27142
dc.identifier.doi10.2196/27142
dc.identifier.essn1438-8871
dc.identifier.pmcPMC8190647
dc.identifier.pmid33989163
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190647/pdf
dc.identifier.unpaywallURLhttps://www.jmir.org/2021/5/e27142/PDF
dc.identifier.urihttp://hdl.handle.net/10668/17792
dc.issue.number5
dc.journal.titleJournal of medical Internet research
dc.journal.titleabbreviationJ Med Internet Res
dc.language.isoen
dc.organizationHospital Costa del Sol
dc.organizationHospital Universitario Regional de Málaga
dc.page.number2
dc.provenanceRealizada la curación de contenido 21/04/2025
dc.publisherJMIR Publications
dc.pubmedtypeJournal Article
dc.pubmedtypeComment
dc.relation.publisherversionhttps://www.jmir.org/2021/5/e27142/
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCOVID-19
dc.subjectSARS-CoV-2
dc.subjectArtificial intelligence
dc.subjectBig data
dc.subjectClassification bias
dc.subjectCritical care
dc.subjectElectronic health records
dc.subjectPredictive model
dc.subjectPrognosis
dc.subjectTachypnea
dc.subject.decsAprendizaje automático
dc.subject.decsUnidades de Cuidados Intensivos
dc.subject.decsDiagnóstico
dc.subject.decsInteligencia Artificial
dc.subject.decsProgramas informáticos
dc.subject.meshBias
dc.subject.meshCOVID-19
dc.subject.meshHumans
dc.subject.meshIntensive Care Units
dc.subject.meshMachine Learning
dc.subject.meshNatural Language Processing
dc.subject.meshPrognosis
dc.subject.meshRetrospective Studies
dc.subject.meshSARS-CoV-2
dc.titleMinimizing Selection and Classification Biases. Comment on "Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing".
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number23
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Martos-Perez_MinimizingSelection.pdf
Size:
29.1 KB
Format:
Adobe Portable Document Format