Publication:
Targeted maximum likelihood estimation for a binary treatment: A tutorial.

dc.contributor.authorLuque-Fernandez, Miguel Angel
dc.contributor.authorSchomaker, Michael
dc.contributor.authorRachet, Bernard
dc.contributor.authorSchnitzer, Mireille E
dc.contributor.funderCancer Research UK
dc.date.accessioned2023-01-25T10:07:15Z
dc.date.available2023-01-25T10:07:15Z
dc.date.issued2018-01-09
dc.description.abstractWhen estimating the average effect of a binary treatment (or exposure) on an outcome, methods that incorporate propensity scores, the G-formula, or targeted maximum likelihood estimation (TMLE) are preferred over naïve regression approaches, which are biased under misspecification of a parametric outcome model. In contrast propensity score methods require the correct specification of an exposure model. Double-robust methods only require correct specification of either the outcome or the exposure model. Targeted maximum likelihood estimation is a semiparametric double-robust method that improves the chances of correct model specification by allowing for flexible estimation using (nonparametric) machine-learning methods. It therefore requires weaker assumptions than its competitors. We provide a step-by-step guided implementation of TMLE and illustrate it in a realistic scenario based on cancer epidemiology where assumptions about correct model specification and positivity (ie, when a study participant had 0 probability of receiving the treatment) are nearly violated. This article provides a concise and reproducible educational introduction to TMLE for a binary outcome and exposure. The reader should gain sufficient understanding of TMLE from this introductory tutorial to be able to apply the method in practice. Extensive R-code is provided in easy-to-read boxes throughout the article for replicability. Stata users will find a testing implementation of TMLE and additional material in the Appendix S1 and at the following GitHub repository: https://github.com/migariane/SIM-TMLE-tutorial.
dc.description.sponsorshipThis work was supported by Cancer Research UK grant number C7923/A18525. M.A.L.F. is supported by a Miguel Servet I Investigator Award (grant CP17/00206) from the Carlos III Institute of Health, and M.E.S. is supported by a Canadian Institutes of Health Research New Investigator Award. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the funding agencies. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication
dc.description.versionSi
dc.identifier.citationLuque-Fernandez MA, Schomaker M, Rachet B, Schnitzer ME. Targeted maximum likelihood estimation for a binary treatment: A tutorial. Stat Med. 2018 Jul 20;37(16):2530-2546
dc.identifier.doi10.1002/sim.7628
dc.identifier.essn1097-0258
dc.identifier.pmcPMC6032875
dc.identifier.pmid29687470
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032875/pdf
dc.identifier.unpaywallURLhttps://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sim.7628
dc.identifier.urihttp://hdl.handle.net/10668/12381
dc.issue.number16
dc.journal.titleStatistics in medicine
dc.journal.titleabbreviationStat Med
dc.language.isoen
dc.organizationEscuela Andaluza de Salud Pública-EASP
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.number2530-2546
dc.publisherJohn Wiley & Sons Ltd.
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDC7923/A18525
dc.relation.publisherversiononlinelibrary.wiley.com/doi/full/10.1002/sim.7628
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectcausal inference
dc.subjectensemble Learning
dc.subjectmachine learning
dc.subjectobservational studies
dc.subjecttargeted maximum likelihood estimation
dc.subject.decsAlgoritmos
dc.subject.decsAprendizaje automático
dc.subject.decsFunciones de verosimilitud
dc.subject.decsHumanos
dc.subject.decsInterpretación estadística de datos
dc.subject.decsMétodos epidemiológicos
dc.subject.decsNeoplasias
dc.subject.decsPuntaje de propensión
dc.subject.decsSimulación por computador
dc.subject.meshAlgorithms
dc.subject.meshComputer Simulation
dc.subject.meshData Interpretation, Statistical
dc.subject.meshEpidemiologic Methods
dc.subject.meshHumans
dc.subject.meshLikelihood Functions
dc.subject.meshMachine Learning
dc.subject.meshNeoplasms
dc.subject.meshPropensity Score
dc.titleTargeted maximum likelihood estimation for a binary treatment: A tutorial.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number37
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC6032875.pdf
Size:
398.06 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Luque_Targeted_MaterialSuplementario.zip
Size:
1.84 MB
Format: