Publication:
The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm

dc.contributor.authorFernandez-Viagas, Victor
dc.contributor.authorSanchez-Mediano, Luis
dc.contributor.authorAngulo-Cortes, Alvaro
dc.contributor.authorGomez-Medina, David
dc.contributor.authorMolina-Pariente, Jose Manuel
dc.contributor.authoraffiliation[Fernandez-Viagas, Victor] Univ Seville, Sch Engn, Dept Ind Org & Business Management 1, Seville 41091, Spain
dc.contributor.authoraffiliation[Sanchez-Mediano, Luis] Univ Seville, Sch Engn, Dept Ind Org & Business Management 1, Seville 41091, Spain
dc.contributor.authoraffiliation[Angulo-Cortes, Alvaro] Univ Seville, Sch Engn, Dept Ind Org & Business Management 1, Seville 41091, Spain
dc.contributor.authoraffiliation[Gomez-Medina, David] Univ Seville, Sch Engn, Dept Ind Org & Business Management 1, Seville 41091, Spain
dc.contributor.authoraffiliation[Molina-Pariente, Jose Manuel] Univ Seville, Sch Engn, Dept Ind Org & Business Management 1, Seville 41091, Spain
dc.contributor.authoraffiliation[Fernandez-Viagas, Victor] Hosp Univ Virgen Rocio, Grp Informat Salud Computac, Seville 41013, Spain
dc.contributor.authoraffiliation[Gomez-Medina, David] Hosp Univ Virgen Rocio, Grp Informat Salud Computac, Seville 41013, Spain
dc.contributor.authoraffiliation[Molina-Pariente, Jose Manuel] Hosp Univ Virgen Rocio, Grp Informat Salud Computac, Seville 41013, Spain
dc.contributor.funderJunta de Andalucia (I+D+i FEDER Andalucia)
dc.contributor.funderMinisterio de Ciencia e Innovacion (Spain)
dc.date.accessioned2023-05-03T14:13:31Z
dc.date.available2023-05-03T14:13:31Z
dc.date.issued2022-10-01
dc.description.abstractIn this paper, we address the permutation flow shop scheduling problem with sequence-dependent and non-anticipatory setup times. These setups are performed or supervised by multiple servers, which are renewable secondary resources (typically human resources). Despite the real applications of this kind of human supervision and the growing attention paid in the scheduling literature, we are not aware of any previous study on the problem under consideration. To cover this gap, we start theoretically addressing the problem by: proposing three mixed-integer linear programming models to find optimal solutions in the problem; and proposing different decoding procedures to code solutions in approximated procedures. After that, the best decoding procedure is used to propose a new mechanism that generates 896 different dispatching rules, combining different measures, indicators, and sorting criteria. All these dispatching rules are embedded in the traditional NEH algorithm. Finally, an iterated greedy algorithm is proposed to find near-optimal solutions. By doing so, we provide academics and practitioners with efficient methods that can be used to obtain exact solutions of the problem; applied to quickly schedule jobs and react under changes; used for initialisation or embedded in more advanced algorithms; and/or easily updated and implemented in real manufacturing scenarios.
dc.identifier.doi10.3390/math10193446
dc.identifier.essn2227-7390
dc.identifier.unpaywallURLhttps://www.mdpi.com/2227-7390/10/19/3446/pdf?version=1665369999
dc.identifier.urihttp://hdl.handle.net/10668/21414
dc.identifier.wosID867898900001
dc.issue.number19
dc.journal.titleMathematics
dc.journal.titleabbreviationMathematics
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.publisherMdpi
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectscheduling
dc.subjectflow shop
dc.subjectMILP
dc.subjectdecoding procedure
dc.subjectmakespan
dc.subjectflow shop
dc.subjecthuman resources
dc.subjectmultiple servers
dc.subjectsequence-dependent setups
dc.subjectiterated greedy
dc.subjectDependent setup times
dc.subjectMinimize makespan
dc.subjectMachine
dc.subjectOptimization
dc.subjectServer
dc.titleThe Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number10
dc.wostypeArticle
dspace.entity.typePublication

Files