Publication:
Evolutionary 3D Image Segmentation of Curve Epithelial Tissues of Drosophila melanogaster

dc.contributor.authorCapitan-Agudo, Carlos
dc.contributor.authorPontes, Beatriz
dc.contributor.authorGomez-Galvez, Pedro
dc.contributor.authorVicente-Munuera, Pablo
dc.contributor.authoraffiliation[Capitan-Agudo, Carlos] Univ Seville, Dept Comp Languages, Seville 41013, Spain
dc.contributor.authoraffiliation[Pontes, Beatriz] Univ Seville, Dept Comp Languages, Seville 41013, Spain
dc.contributor.authoraffiliation[Gomez-Galvez, Pedro] Univ Seville, CSIC, Hosp Univ Virgen del Rocio, Inst Biomed Sevilla IBiS, Seville 41013, Spain
dc.contributor.authoraffiliation[Vicente-Munuera, Pablo] Univ Seville, CSIC, Hosp Univ Virgen del Rocio, Inst Biomed Sevilla IBiS, Seville 41013, Spain
dc.contributor.authoraffiliation[Gomez-Galvez, Pedro] Univ Seville, Dept Biol Celular, Seville 41013, Spain
dc.contributor.authoraffiliation[Vicente-Munuera, Pablo] Univ Seville, Dept Biol Celular, Seville 41013, Spain
dc.contributor.authoraffiliation[Gomez-Galvez, Pedro] Biomed Network Res Ctr Neurodegenerat Dis CIBERNE, Madrid 28031, Spain
dc.contributor.authoraffiliation[Vicente-Munuera, Pablo] Biomed Network Res Ctr Neurodegenerat Dis CIBERNE, Madrid 28031, Spain
dc.contributor.authoraffiliation[Vicente-Munuera, Pablo] UCL, MRC, Lab Mol Cell Biol, London WC1E 6BT, England
dc.contributor.funderFEDER/Ministerio de Ciencia e Innovacion-Agencia Estatal de Investigacion
dc.contributor.funderAndalusian Regional Government
dc.contributor.funderMinistry of Economy, Industry and Competitiveness
dc.contributor.funderFEDER funds
dc.contributor.funderSpanish Ministry of Science and Innovation Ministry of Science
dc.date.accessioned2023-02-12T02:22:48Z
dc.date.available2023-02-12T02:22:48Z
dc.date.issued2021-07-01
dc.description.abstractAnalysing biological images coming from the microscope is challenging; not only is it complex to acquire the images, but also the three-dimensional shapes found on them. Thus, using automatic approaches that could learn and embrace that variance would be highly interesting for the field. Here, we use an evolutionary algorithm to obtain the 3D cell shape of curve epithelial tissues. Our approach is based on the application of a 3D segmentation algorithm called LimeSeg, which is a segmentation software that uses a particle-based active contour method. This program needs the fine-tuning of some hyperparameters that could present a long number of combinations, with the selection of the best parametrisation being highly time-consuming. Our evolutionary algorithm automatically selects the best possible parametrisation with which it can perform an accurate and non-supervised segmentation of 3D curved epithelial tissues. This way, we combine the segmentation potential of LimeSeg and optimise the parameters selection by adding automatisation. This methodology has been applied to three datasets of confocal images from Drosophila melanogaster, where a good convergence has been observed in the evaluation of the solutions. Our experimental results confirm the proper performing of the algorithm, whose segmented images have been compared to those manually obtained for the same tissues.
dc.identifier.doi10.3390/app11146410
dc.identifier.essn2076-3417
dc.identifier.unpaywallURLhttps://www.mdpi.com/2076-3417/11/14/6410/pdf?version=1626424591
dc.identifier.urihttp://hdl.handle.net/10668/19248
dc.identifier.wosID678164300001
dc.issue.number14
dc.journal.titleApplied sciences-basel
dc.journal.titleabbreviationAppl. sci.-basel
dc.language.isoen
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.organizationHospital Universitario Virgen del Rocío
dc.publisherMdpi
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectmicroscopic cell images
dc.subject3D image segmentation
dc.subjectevolutionary segmentation
dc.subjectOptimization
dc.subjectAlgorithm
dc.titleEvolutionary 3D Image Segmentation of Curve Epithelial Tissues of Drosophila melanogaster
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dc.wostypeArticle
dspace.entity.typePublication

Files