Publication: Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast.
Identifiers
Date
2021-04-07
Authors
Perez-Ortin, Jose E
Mena, Adriana
Barba-Aliaga, Marina
Singh, Abhyudai
Chavez, Sebastian
Gariía-Martinez, Jose
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
Abstract
The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell size in polyploid cells. In haploid mutant cells with larger cell sizes, the rDNA repeat copy number rises. By combining mathematical modeling and experimental work with the large-size cln3 strain, we observed that the increasing repeat copy number is based on a feedback mechanism in which Sir2 histone deacetylase homeostatically controls the amplification of rDNA repeats in a volume-dependent manner. This amplification is paralleled with an increase in rRNA nTR, which indicates a control of the RNA pol I synthesis rate by cell volume.
Description
MeSH Terms
Cyclins
Genes, rRNA
Homeostasis
RNA Polymerase I
Saccharomyces cerevisiae
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Transcription, Genetic
Genes, rRNA
Homeostasis
RNA Polymerase I
Saccharomyces cerevisiae
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Transcription, Genetic
DeCS Terms
Tamaño de la célula
ADN Ribosómico
ARN Polimerasa II
ARN Polimerasa I
Células
Histona Desacetilasas
Haploidia
ARN
Poliploidía
ADN Ribosómico
ARN Polimerasa II
ARN Polimerasa I
Células
Histona Desacetilasas
Haploidia
ARN
Poliploidía
CIE Terms
Keywords
Cell Size, DNA, Ribosomal, Haploidy, Models, Theoretical, RNA Polymerase II, Saccharomyces cerevisiae Proteins, Sirtuin 2
Citation
Pérez-Ortín JE, Mena A, Barba-Aliaga M, Singh A, Chávez S, García-Martínez J. Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genet. 2021 Apr 7;17(4):e1009520.