Publication: Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group.
dc.contributor.author | Mosquera Orgueira, Adrian | |
dc.contributor.author | Gonzalez Perez, Marta Sonia | |
dc.contributor.author | Diaz Arias, Jose | |
dc.contributor.author | Rosiñol, Laura | |
dc.contributor.author | Oriol, Albert | |
dc.contributor.author | Teruel, Ana Isabel | |
dc.contributor.author | Martinez Lopez, Joaquin | |
dc.contributor.author | Palomera, Luis | |
dc.contributor.author | Granell, Miguel | |
dc.contributor.author | Blanchard, Maria Jesus | |
dc.contributor.author | de la Rubia, Javier | |
dc.contributor.author | Lopez de la Guia, Ana | |
dc.contributor.author | Rios, Rafael | |
dc.contributor.author | Sureda, Anna | |
dc.contributor.author | Hernandez, Miguel Teodoro | |
dc.contributor.author | Bengoechea, Enrique | |
dc.contributor.author | Calasanz, Maria Jose | |
dc.contributor.author | Gutierrez, Norma | |
dc.contributor.author | Martin, Maria Luis | |
dc.contributor.author | Blade, Joan | |
dc.contributor.author | Lahuerta, Juan-Jose | |
dc.contributor.author | San Miguel, Jesus | |
dc.contributor.author | Mateos, Maria Victoria | |
dc.contributor.group | PETHEMA/GEM Cooperative Group | |
dc.date.accessioned | 2023-05-03T13:26:12Z | |
dc.date.available | 2023-05-03T13:26:12Z | |
dc.date.issued | 2022-03-11 | |
dc.description.abstract | The International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification. | |
dc.description.version | Si | |
dc.identifier.citation | Mosquera Orgueira A, González Pérez MS, Diaz Arias J, Rosiñol L, Oriol A, Teruel AI, et al. Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group. Blood Cancer J. 2022 Apr 25;12(4):76. | |
dc.identifier.doi | 10.1038/s41408-022-00647-z | |
dc.identifier.essn | 2044-5385 | |
dc.identifier.pmc | PMC9038663 | |
dc.identifier.pmid | 35468898 | |
dc.identifier.pubmedURL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038663/pdf | |
dc.identifier.unpaywallURL | https://www.nature.com/articles/s41408-022-00647-z.pdf | |
dc.identifier.uri | http://hdl.handle.net/10668/19515 | |
dc.issue.number | 4 | |
dc.journal.title | Blood cancer journal | |
dc.journal.titleabbreviation | Blood Cancer J | |
dc.language.iso | en | |
dc.organization | Hospital Universitario Virgen de las Nieves | |
dc.organization | Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA) | |
dc.page.number | 9 | |
dc.publisher | Nature Publishing Group | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Research Support, Non-U.S. Gov't | |
dc.relation.publisherversion | https://doi.org/10.1038/s41408-022-00647-z | |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Humans | |
dc.subject | Multiple Myeloma | |
dc.subject | Neoplasm Staging | |
dc.subject | Prognosis | |
dc.subject | Risk Assessment | |
dc.subject | Unsupervised Machine Learning | |
dc.subject.decs | Análisis citogenético | |
dc.subject.decs | Aprendizaje automático no supervisado | |
dc.subject.decs | Humanos | |
dc.subject.decs | Medición de riesgo | |
dc.subject.decs | Mieloma múltiple | |
dc.subject.decs | Puntaje de gravedad del traumatismo | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Multiple Myeloma | |
dc.subject.mesh | Injury Severity Score | |
dc.subject.mesh | Unsupervised Machine Learning | |
dc.subject.mesh | Risk Assessment | |
dc.subject.mesh | Cytogenetic Analysis | |
dc.title | Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 12 | |
dspace.entity.type | Publication |