Publication:
Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group.

dc.contributor.authorMosquera Orgueira, Adrian
dc.contributor.authorGonzalez Perez, Marta Sonia
dc.contributor.authorDiaz Arias, Jose
dc.contributor.authorRosiñol, Laura
dc.contributor.authorOriol, Albert
dc.contributor.authorTeruel, Ana Isabel
dc.contributor.authorMartinez Lopez, Joaquin
dc.contributor.authorPalomera, Luis
dc.contributor.authorGranell, Miguel
dc.contributor.authorBlanchard, Maria Jesus
dc.contributor.authorde la Rubia, Javier
dc.contributor.authorLopez de la Guia, Ana
dc.contributor.authorRios, Rafael
dc.contributor.authorSureda, Anna
dc.contributor.authorHernandez, Miguel Teodoro
dc.contributor.authorBengoechea, Enrique
dc.contributor.authorCalasanz, Maria Jose
dc.contributor.authorGutierrez, Norma
dc.contributor.authorMartin, Maria Luis
dc.contributor.authorBlade, Joan
dc.contributor.authorLahuerta, Juan-Jose
dc.contributor.authorSan Miguel, Jesus
dc.contributor.authorMateos, Maria Victoria
dc.contributor.groupPETHEMA/GEM Cooperative Group
dc.date.accessioned2023-05-03T13:26:12Z
dc.date.available2023-05-03T13:26:12Z
dc.date.issued2022-03-11
dc.description.abstractThe International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification.
dc.description.versionSi
dc.identifier.citationMosquera Orgueira A, González Pérez MS, Diaz Arias J, Rosiñol L, Oriol A, Teruel AI, et al. Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group. Blood Cancer J. 2022 Apr 25;12(4):76.
dc.identifier.doi10.1038/s41408-022-00647-z
dc.identifier.essn2044-5385
dc.identifier.pmcPMC9038663
dc.identifier.pmid35468898
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038663/pdf
dc.identifier.unpaywallURLhttps://www.nature.com/articles/s41408-022-00647-z.pdf
dc.identifier.urihttp://hdl.handle.net/10668/19515
dc.issue.number4
dc.journal.titleBlood cancer journal
dc.journal.titleabbreviationBlood Cancer J
dc.language.isoen
dc.organizationHospital Universitario Virgen de las Nieves
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.number9
dc.publisherNature Publishing Group
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.publisherversionhttps://doi.org/10.1038/s41408-022-00647-z
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHumans
dc.subjectMultiple Myeloma
dc.subjectNeoplasm Staging
dc.subjectPrognosis
dc.subjectRisk Assessment
dc.subjectUnsupervised Machine Learning
dc.subject.decsAnálisis citogenético
dc.subject.decsAprendizaje automático no supervisado
dc.subject.decsHumanos
dc.subject.decsMedición de riesgo
dc.subject.decsMieloma múltiple
dc.subject.decsPuntaje de gravedad del traumatismo
dc.subject.meshHumans
dc.subject.meshMultiple Myeloma
dc.subject.meshInjury Severity Score
dc.subject.meshUnsupervised Machine Learning
dc.subject.meshRisk Assessment
dc.subject.meshCytogenetic Analysis
dc.titleUnsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC9038663.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Mosquera_Unsupervised_MaterialSuplementario.pdf
Size:
3.39 MB
Format:
Adobe Portable Document Format