Publication: The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs.
dc.contributor.author | Lakhani, Paras | |
dc.contributor.author | Mongan, J | |
dc.contributor.author | Singhal, C | |
dc.contributor.author | Zhou, Q | |
dc.contributor.author | Andriole, K P | |
dc.contributor.author | Auffermann, W F | |
dc.contributor.author | Prasanna, P M | |
dc.contributor.author | Pham, T X | |
dc.contributor.author | Peterson, Michael | |
dc.contributor.author | Bergquist, P J | |
dc.contributor.author | Cook, T S | |
dc.contributor.author | Ferraciolli, S F | |
dc.contributor.author | Corradi, G C A | |
dc.contributor.author | Takahashi, M S | |
dc.contributor.author | Workman, C S | |
dc.contributor.author | Parekh, M | |
dc.contributor.author | Kamel, S I | |
dc.contributor.author | Galant, J | |
dc.contributor.author | Mas-Sanchez, A | |
dc.contributor.author | Benítez, E C | |
dc.contributor.author | Sánchez-Valverde, M | |
dc.contributor.author | Jaques, L | |
dc.contributor.author | Panadero, M | |
dc.contributor.author | Vidal, M | |
dc.contributor.author | Culiañez-Casas, M | |
dc.contributor.author | Angulo-Gonzalez, D | |
dc.contributor.author | Langer, S G | |
dc.contributor.author | de la Iglesia-Vayá, María | |
dc.contributor.author | Shih, G | |
dc.date.accessioned | 2023-05-03T13:36:45Z | |
dc.date.available | 2023-05-03T13:36:45Z | |
dc.date.issued | 2022-09-28 | |
dc.description.abstract | We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international group of radiologists into four mutually exclusive categories, including "typical," "indeterminate," and "atypical appearance" for COVID-19, or "negative for pneumonia," adapted from previously published guidelines, and bounding boxes were placed on airspace opacities. This dataset and respective annotations are available to researchers for academic and noncommercial use. | |
dc.identifier.doi | 10.1007/s10278-022-00706-8 | |
dc.identifier.essn | 1618-727X | |
dc.identifier.pmc | PMC9518934 | |
dc.identifier.pmid | 36171520 | |
dc.identifier.pubmedURL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518934/pdf | |
dc.identifier.unpaywallURL | https://link.springer.com/content/pdf/10.1007/s10278-022-00706-8.pdf | |
dc.identifier.uri | http://hdl.handle.net/10668/20430 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of digital imaging | |
dc.journal.titleabbreviation | J Digit Imaging | |
dc.language.iso | en | |
dc.organization | Hospital Universitario Virgen del Rocío | |
dc.page.number | 365-372 | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Research Support, Non-U.S. Gov't | |
dc.pubmedtype | Research Support, U.S. Gov't, Non-P.H.S. | |
dc.rights.accessRights | open access | |
dc.subject | Artificial Intelligence | |
dc.subject | COVID-19 | |
dc.subject | Machine Learning | |
dc.subject | Pneumonia | |
dc.subject | Radiography | |
dc.subject | Thorax | |
dc.subject.mesh | Humans | |
dc.subject.mesh | COVID-19 | |
dc.subject.mesh | Artificial Intelligence | |
dc.subject.mesh | Radiography | |
dc.subject.mesh | Machine Learning | |
dc.subject.mesh | Radiologists | |
dc.subject.mesh | Radiography, Thoracic | |
dc.title | The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 36 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1