Publication: Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation
dc.contributor.author | Guijo-Rubio, David | |
dc.contributor.author | Briceño, Javier | |
dc.contributor.author | Gutiérrez, Pedro Antonio | |
dc.contributor.author | Ayllón, Maria Dolores | |
dc.contributor.author | Ciria, Rubén | |
dc.contributor.author | Hervás-Martínez, César | |
dc.contributor.authoraffiliation | [Guijo-Rubio,D; Gutiérrez,PA; Hervás-Martínez,C] Department of Computer Sciences and Numerical Analysis, University of Córdoba, Córdoba, Spain. [Briceño,J; Ayllón,MD; Ciria,R] Unit of Hepatobiliary Surgery and Liver Transplantation, Hospital Universitario Reina Sofía, IMIBIC, Córdoba, Spain | |
dc.contributor.funder | DGR, PAG, CHM -> FEDER funds and Spanish Ministry of Economy and Competitiveness, grant reference: TIN2017-85887-C2-1-P, webpage: https://sede.mineco.gob.es DGR, PAG, CHM -> Consejería de Salud y Familia de la Junta de Andalucía, grant reference: PS- 2020-780, webpage: https://www.juntadeandalucia.es/organismos/saludyfamilias.html DGR, PAG, CHM -> Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía, grant reference: UCO-1261651, webpage: https://www.juntadeandalucia.es/organismos/transformacioneconomicaindustriaconocimientoyuniversidades.html DGR -> Spanish Ministry of Education and Science, FPU Predoctoral Program, grant reference: FPU16/02128, webpage: https://www.ciencia.gob.es/. JB, MDA, RC -> Fundación Pública Andaluza Progreso y Salud, grant reference: PI-032-2014, webpage: https://www.sspa.juntadeandalucia.es/fundacionprogresoysalud/es. All -> Fundación de Investigación Biomédica de Córdoba (FIBICO), grant reference: PI15/01570, webpage: https://www.imibic.org/fibico. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | |
dc.date.accessioned | 2022-11-25T10:18:57Z | |
dc.date.available | 2022-11-25T10:18:57Z | |
dc.date.issued | 2021-05-21 | |
dc.description.abstract | Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database. | es_ES |
dc.description.version | Yes | es_ES |
dc.identifier.citation | Guijo-Rubio D, Briceño J, Gutiérrez PA, Ayllón MD, Ciria R, Hervás-Martínez C. Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS One. 2021 May 21;16(5):e0252068 | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0252068 | es_ES |
dc.identifier.essn | 1932-6203 | |
dc.identifier.pmc | PMC8139468 | |
dc.identifier.pmid | 34019601 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10668/4405 | |
dc.journal.title | PLOS ONE | |
dc.language.iso | en | |
dc.page.number | 16 p. | |
dc.publisher | Public Library of Science | es_ES |
dc.relation.publisherversion | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252068 | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Support vector machine | es_ES |
dc.subject | Liver transplantation | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Methods | es_ES |
dc.subject | Logistic models | es_ES |
dc.subject | Survival | es_ES |
dc.subject | Máquina de vectores de soporte | es_ES |
dc.subject | Trasplante de hígado | es_ES |
dc.subject | Aprendizaje automático | es_ES |
dc.subject | Métodos | es_ES |
dc.subject | Modelos logísticos | es_ES |
dc.subject | Supervivencia | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Probability::Bayes Theorem | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Decision Support Techniques::Data Interpretation, Statistical | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Information Storage and Retrieval::Databases as Topic::Databases, Factual | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Immunologic Tests::Histocompatibility Testing | es_ES |
dc.subject.mesh | Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Surgical Procedures, Operative::Digestive System Surgical Procedures::Liver Transplantation | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Models, Theoretical::Models, Statistical::Logistic Models | es_ES |
dc.subject.mesh | Medical Subject Headings::Persons::Persons::Tissue Donors | es_ES |
dc.subject.mesh | Medical Subject Headings::Health Care::Health Care Facilities, Manpower, and Services::Health Services::Tissue and Organ Procurement | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithms::Support Vector Machines | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Area Under Curve | es_ES |
dc.subject.mesh | Medical Subject Headings::Phenomena and Processes::Mathematical Concepts::Neural Networks (Computer) | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Methods | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Data Collection::Vital Statistics::Mortality::Survival Rate | es_ES |
dc.subject.mesh | Medical Subject Headings::Anthropology, Education, Sociology and Social Phenomena::Human Activities::Survival | es_ES |
dc.title | Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation | es_ES |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- GuijoRubio_StatisticalMethods.pdf
- Size:
- 1.33 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo publicado