Publication:
Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation

dc.contributor.authorGuijo-Rubio, David
dc.contributor.authorBriceño, Javier
dc.contributor.authorGutiérrez, Pedro Antonio
dc.contributor.authorAyllón, Maria Dolores
dc.contributor.authorCiria, Rubén
dc.contributor.authorHervás-Martínez, César
dc.contributor.authoraffiliation[Guijo-Rubio,D; Gutiérrez,PA; Hervás-Martínez,C] Department of Computer Sciences and Numerical Analysis, University of Córdoba, Córdoba, Spain. [Briceño,J; Ayllón,MD; Ciria,R] Unit of Hepatobiliary Surgery and Liver Transplantation, Hospital Universitario Reina Sofía, IMIBIC, Córdoba, Spain
dc.contributor.funderDGR, PAG, CHM -> FEDER funds and Spanish Ministry of Economy and Competitiveness, grant reference: TIN2017-85887-C2-1-P, webpage: https://sede.mineco.gob.es DGR, PAG, CHM -> Consejería de Salud y Familia de la Junta de Andalucía, grant reference: PS- 2020-780, webpage: https://www.juntadeandalucia.es/organismos/saludyfamilias.html DGR, PAG, CHM -> Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía, grant reference: UCO-1261651, webpage: https://www.juntadeandalucia.es/organismos/transformacioneconomicaindustriaconocimientoyuniversidades.html DGR -> Spanish Ministry of Education and Science, FPU Predoctoral Program, grant reference: FPU16/02128, webpage: https://www.ciencia.gob.es/. JB, MDA, RC -> Fundación Pública Andaluza Progreso y Salud, grant reference: PI-032-2014, webpage: https://www.sspa.juntadeandalucia.es/fundacionprogresoysalud/es. All -> Fundación de Investigación Biomédica de Córdoba (FIBICO), grant reference: PI15/01570, webpage: https://www.imibic.org/fibico. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.date.accessioned2022-11-25T10:18:57Z
dc.date.available2022-11-25T10:18:57Z
dc.date.issued2021-05-21
dc.description.abstractDonor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database.es_ES
dc.description.versionYeses_ES
dc.identifier.citationGuijo-Rubio D, Briceño J, Gutiérrez PA, Ayllón MD, Ciria R, Hervás-Martínez C. Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS One. 2021 May 21;16(5):e0252068es_ES
dc.identifier.doi10.1371/journal.pone.0252068es_ES
dc.identifier.essn1932-6203
dc.identifier.pmcPMC8139468
dc.identifier.pmid34019601es_ES
dc.identifier.urihttp://hdl.handle.net/10668/4405
dc.journal.titlePLOS ONE
dc.language.isoen
dc.page.number16 p.
dc.publisherPublic Library of Sciencees_ES
dc.relation.publisherversionhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252068es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSupport vector machinees_ES
dc.subjectLiver transplantationes_ES
dc.subjectMachine learninges_ES
dc.subjectMethodses_ES
dc.subjectLogistic modelses_ES
dc.subjectSurvivales_ES
dc.subjectMáquina de vectores de soportees_ES
dc.subjectTrasplante de hígadoes_ES
dc.subjectAprendizaje automáticoes_ES
dc.subjectMétodoses_ES
dc.subjectModelos logísticoses_ES
dc.subjectSupervivenciaes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Probability::Bayes Theoremes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Decision Support Techniques::Data Interpretation, Statisticales_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Information Storage and Retrieval::Databases as Topic::Databases, Factuales_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Immunologic Tests::Histocompatibility Testinges_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Surgical Procedures, Operative::Digestive System Surgical Procedures::Liver Transplantationes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Models, Theoretical::Models, Statistical::Logistic Modelses_ES
dc.subject.meshMedical Subject Headings::Persons::Persons::Tissue Donorses_ES
dc.subject.meshMedical Subject Headings::Health Care::Health Care Facilities, Manpower, and Services::Health Services::Tissue and Organ Procurementes_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithms::Support Vector Machineses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Area Under Curvees_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Mathematical Concepts::Neural Networks (Computer)es_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Methodses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Data Collection::Vital Statistics::Mortality::Survival Ratees_ES
dc.subject.meshMedical Subject Headings::Anthropology, Education, Sociology and Social Phenomena::Human Activities::Survivales_ES
dc.titleStatistical methods versus machine learning techniques for donor-recipient matching in liver transplantationes_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GuijoRubio_StatisticalMethods.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado