Publication:
Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival

dc.contributor.authorMolina, David
dc.contributor.authorPerez-Beteta, Julian
dc.contributor.authorLuque, Belen
dc.contributor.authorArregui, Elena
dc.contributor.authorCalvo, Manuel
dc.contributor.authorBorras, Jose M.
dc.contributor.authorLopez, Carlos
dc.contributor.authorMartino, Juan
dc.contributor.authorVelasquez, Carlos
dc.contributor.authorAsenjo, Beatriz
dc.contributor.authorBenavides, Manuel
dc.contributor.authorHerruzo, Ismael
dc.contributor.authorMartinez-Gonzalez, Alicia
dc.contributor.authorPerez-Romasanta, Luis
dc.contributor.authorArana, Estanislao
dc.contributor.authorPerez-Garcia, Victor M.
dc.contributor.authoraffiliation[Molina, David] Univ Castilla La Mancha, Inst Matemat Aplicada Ciencia & Ingn, Ciudad Real, Spain
dc.contributor.authoraffiliation[Perez-Beteta, Julian] Univ Castilla La Mancha, Inst Matemat Aplicada Ciencia & Ingn, Ciudad Real, Spain
dc.contributor.authoraffiliation[Luque, Belen] Univ Castilla La Mancha, Inst Matemat Aplicada Ciencia & Ingn, Ciudad Real, Spain
dc.contributor.authoraffiliation[Martinez-Gonzalez, Alicia] Univ Castilla La Mancha, Inst Matemat Aplicada Ciencia & Ingn, Ciudad Real, Spain
dc.contributor.authoraffiliation[Perez-Garcia, Victor M.] Univ Castilla La Mancha, Inst Matemat Aplicada Ciencia & Ingn, Ciudad Real, Spain
dc.contributor.authoraffiliation[Arregui, Elena] Hosp Gen Ciudad Real, Ciudad Real, Spain
dc.contributor.authoraffiliation[Calvo, Manuel] Hosp Gen Ciudad Real, Ciudad Real, Spain
dc.contributor.authoraffiliation[Borras, Jose M.] Hosp Gen Ciudad Real, Ciudad Real, Spain
dc.contributor.authoraffiliation[Lopez, Carlos] Hosp Gen Ciudad Real, Ciudad Real, Spain
dc.contributor.authoraffiliation[Martino, Juan] Hosp Marques Valdecilla, Santander, Spain
dc.contributor.authoraffiliation[Velasquez, Carlos] Hosp Marques Valdecilla, Santander, Spain
dc.contributor.authoraffiliation[Asenjo, Beatriz] Hosp Carlos Haya, Malaga, Spain
dc.contributor.authoraffiliation[Benavides, Manuel] Hosp Carlos Haya, Malaga, Spain
dc.contributor.authoraffiliation[Herruzo, Ismael] Hosp Carlos Haya, Malaga, Spain
dc.contributor.authoraffiliation[Perez-Romasanta, Luis] Hosp Univ Salamanca, Salamanca, Spain
dc.contributor.authoraffiliation[Arana, Estanislao] Inst Valenciano Oncol, Valencia, Spain
dc.contributor.funderMinisterio de Economia y Competitividad/FEDER, Spain
dc.contributor.funderConsejeria de Educacion Cultura y Deporte from Junta de Comunidades de Castilla-La Mancha, Spain
dc.contributor.funderJames S McDonnell Foundation 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer
dc.date.accessioned2023-02-12T02:22:14Z
dc.date.available2023-02-12T02:22:14Z
dc.date.issued2016-01-01
dc.description.abstractObjective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T-1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome.Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan-Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient.Results: Kaplan-Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months.Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T-1 weighted MR images of patients with GBM are predictors of survival.Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour.
dc.identifier.doi10.1259/bjr.20160242
dc.identifier.essn1748-880X
dc.identifier.issn0007-1285
dc.identifier.unpaywallURLhttps://europepmc.org/articles/pmc5124892?pdf=render
dc.identifier.urihttp://hdl.handle.net/10668/19143
dc.identifier.wosID380755500027
dc.issue.number1064
dc.journal.titleBritish journal of radiology
dc.journal.titleabbreviationBr. j. radiol.
dc.language.isoen
dc.organizationHospital Universitario Regional de Málaga
dc.publisherBritish inst radiology
dc.rights.accessRightsopen access
dc.subjectTemozolomide
dc.subjectConcomitant
dc.subjectCancer
dc.titleTumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number89
dc.wostypeArticle
dspace.entity.typePublication

Files