Publication:
Optimization of quality measures in association rule mining: an empirical study

dc.contributor.authorLuna, J. M.
dc.contributor.authorOndra, M.
dc.contributor.authorFardoun, H. M.
dc.contributor.authorVentura, S.
dc.contributor.authoraffiliation[Luna, J. M.] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
dc.contributor.authoraffiliation[Ventura, S.] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
dc.contributor.authoraffiliation[Ondra, M.] Palacky Univ, Dept Math Anal & Applicat Math, Olomouc, Czech Republic
dc.contributor.authoraffiliation[Fardoun, H. M.] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
dc.contributor.authoraffiliation[Ventura, S.] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
dc.contributor.authoraffiliation[Ventura, S.] Maimonides Biomed Res Inst Cordoba, Knowledge Discovery & Intelligent Syst Biomed Lab, Cordoba, Spain
dc.contributor.funderSpanish Ministry of Economy and Competitiveness
dc.contributor.funderEuropean Regional Development Fund
dc.date.accessioned2023-02-12T02:22:33Z
dc.date.available2023-02-12T02:22:33Z
dc.date.issued2018-08-06
dc.description.abstractIn the association rule mining field many different quality measures have been proposed over time with the aim of quantifying the interestingness of each discovered rule. In evolutionary computation, many of these metrics have been used as functions to be optimized, but the selection of a set of suitable quality measures for each specific problem is not a trivial task. The aim of this paper is to review the most widely used quality measures, analyze their properties from an empirical standpoint and, as a result, ease the process of selecting a subset of them for tackling the task of mining association rules through evolutionary computation. The experimental analysis includes twenty metrics, thirty datasets and a diverse set of algorithms to describe which quality measures are related (or unrelated) so they should (or should not) be used at time. A series of recomendations are therefore provided according to which quality measures are easily optimized, what set of measures should be used to optimize the whole set of metrics, or which measures are hardly optimized by any other.
dc.description.sponsorshipThis research was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, project tiN2017-83445-P
dc.description.versionSi
dc.identifier.citationLuna JM, Ondra M, Fardoun HM, Ventura S. Optimization of quality measures in association rule mining: an empirical study. The International Journal Of Computational Intelligence Systems/International Journal Of Computational Intelligence Systems [Internet]. 1 de enero de 2018;12(1):59. Disponible en: https://doi.org/10.2991/ijcis.2018.25905182
dc.identifier.doi10.2991/ijcis.2018.25905182
dc.identifier.essn1875-6883
dc.identifier.issn1875-6891
dc.identifier.urihttp://hdl.handle.net/10668/19205
dc.identifier.wosID454703800005
dc.issue.number1
dc.journal.titleInternational journal of computational intelligence systems
dc.journal.titleabbreviationInt. j. comput. intell. syst.
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.page.number59-78
dc.publisherSpringer Nature
dc.relation.projectIDtiN2017-83445-P
dc.relation.publisherversionhttps://link.springer.com/article/10.2991/ijcis.2018.25905182
dc.rightsAttribution-Noncommercial 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectQuality measures
dc.subjectAssociation rule mining
dc.subjectOptimization
dc.subjectEmpirical study
dc.subjectAlgorithms
dc.subject.decsAlgoritmos
dc.subject.decsBenchmarking
dc.subject.decsEvolución biológica
dc.subject.decsIndicadores de calidad de la atención de salud
dc.subject.decsMinería de datos
dc.subject.meshQuality indicators, health care
dc.subject.meshAlgorithms
dc.subject.meshBenchmarking
dc.subject.meshBiological evolution
dc.subject.meshData mining
dc.titleOptimization of quality measures in association rule mining: an empirical study
dc.typeresearch article
dc.volume.number12
dc.wostypeArticle
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luna_OptimizationOf.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format