Publication: Morphological MRI-based features provide pretreatment survival prediction in glioblastoma.
dc.contributor.author | Perez-Beteta, Julian | |
dc.contributor.author | Molina-Garcia, David | |
dc.contributor.author | Martinez-Gonzalez, Alicia | |
dc.contributor.author | Henares-Molina, Araceli | |
dc.contributor.author | Amo-Salas, Mariano | |
dc.contributor.author | Luque, Belen | |
dc.contributor.author | Arregui, Elena | |
dc.contributor.author | Calvo, Manuel | |
dc.contributor.author | Borras, Jose M | |
dc.contributor.author | Martino, Juan | |
dc.contributor.author | Velasquez, Carlos | |
dc.contributor.author | Melendez-Asensio, Barbara | |
dc.contributor.author | de-Lope, Angel Rodriguez | |
dc.contributor.author | Moreno, Raquel | |
dc.contributor.author | Barcia, Juan A | |
dc.contributor.author | Asenjo, Beatriz | |
dc.contributor.author | Benavides, Manuel | |
dc.contributor.author | Herruzo, Ismael | |
dc.contributor.author | Lara, Pedro C | |
dc.contributor.author | Cabrera, Raquel | |
dc.contributor.author | Albillo, David | |
dc.contributor.author | Navarro, Miguel | |
dc.contributor.author | Perez-Romasanta, Luis A | |
dc.contributor.author | Revert, Antonio | |
dc.contributor.author | Arana, Estanislao | |
dc.contributor.author | Perez-Garcia, Victor M | |
dc.contributor.funder | Ministerio de Economía y Competitividad/FEDER, Spain | |
dc.contributor.funder | James S. Mc. Donnell Foundation | |
dc.date.accessioned | 2023-01-25T10:26:17Z | |
dc.date.available | 2023-01-25T10:26:17Z | |
dc.date.issued | 2018-10-15 | |
dc.description.abstract | Objectives: We wished to determine whether tumor morphology descriptors obtained from pretreatment magnetic resonance images and clinical variables could predict survival for glioblastoma patients. Methods: A cohort of 404 glioblastoma patients (311 discoveries and 93 validations) was used in the study. Pretreatment volumetric postcontrast T1-weighted magnetic resonance images were segmented to obtain the relevant morphological measures. Kaplan-Meier, Cox proportional hazards, correlations, and Harrell’s concordance indexes (c-indexes) were used for the statistical analysis. Results: A linear prognostic model based on the outstanding variables (age, contrast-enhanced (CE) rim width, and surface regularity) identified a group of patients with significantly better survival (p < 0.001, HR = 2.57) with high accuracy (discovery c-index = 0.74; validation c-index = 0.77). A similar model applied to totally resected patients was also able to predict survival (p < 0.001, HR = 3.43) with high predictive value (discovery c-index = 0.81; validation c-index = 0.92). Biopsied patients with better survival were well identified (p < 0.001, HR = 7.25) by a model including age and CE volume (c-index = 0.87). Conclusions: Simple linear models based on small sets of meaningful MRI-based pretreatment morphological features and age predicted survival of glioblastoma patients to a high degree of accuracy. The partition of the population using the extent of resection improved the prognostic value of those measures. | |
dc.description.version | Si | |
dc.identifier.citation | Pérez-Beteta J, Molina-García D, Martínez-González A, Henares-Molina A, Amo-Salas M, Luque B, et al. Morphological MRI-based features provide pretreatment survival prediction in glioblastoma. Eur Radiol. 2019 Apr;29(4):1968-1977 | |
dc.identifier.doi | 10.1007/s00330-018-5758-7 | |
dc.identifier.essn | 1432-1084 | |
dc.identifier.pmid | 30547198 | |
dc.identifier.unpaywallURL | https://link.springer.com/content/pdf/10.1007/s00330-018-5870-8.pdf | |
dc.identifier.uri | http://hdl.handle.net/10668/13310 | |
dc.issue.number | 5 | |
dc.journal.title | European radiology | |
dc.journal.titleabbreviation | Eur Radiol | |
dc.language.iso | en | |
dc.organization | Hospital Universitario Regional de Málaga | |
dc.page.number | 10 | |
dc.provenance | Realizada la curación de contenido 27/03/2025 | |
dc.publisher | Springer | |
dc.pubmedtype | Journal Article | |
dc.relation.projectID | MTM2015-71200-R | |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s00330-018-5758-7 | |
dc.rights.accessRights | Restricted Access | |
dc.subject | Glioblastoma | |
dc.subject | Prognosis | |
dc.subject | Biomarkers | |
dc.subject | Survival analysis | |
dc.subject | Multivariate analysis | |
dc.subject.decs | Descriptores | |
dc.subject.decs | Espectroscopía de Resonancia Magnética | |
dc.subject.decs | Neoplasias | |
dc.subject.decs | Imagen por Resonancia Magnética | |
dc.subject.decs | Modelos Lineales | |
dc.subject.mesh | Prognosis | |
dc.subject.mesh | Linear Models | |
dc.subject.mesh | Biopsy | |
dc.subject.mesh | Magnetic Resonance Imaging | |
dc.title | Morphological MRI-based features provide pretreatment survival prediction in glioblastoma. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 29 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- RISalud_Accesorestringido.pdf
- Size:
- 93.39 KB
- Format:
- Adobe Portable Document Format