Publication:
Morphological MRI-based features provide pretreatment survival prediction in glioblastoma.

dc.contributor.authorPerez-Beteta, Julian
dc.contributor.authorMolina-Garcia, David
dc.contributor.authorMartinez-Gonzalez, Alicia
dc.contributor.authorHenares-Molina, Araceli
dc.contributor.authorAmo-Salas, Mariano
dc.contributor.authorLuque, Belen
dc.contributor.authorArregui, Elena
dc.contributor.authorCalvo, Manuel
dc.contributor.authorBorras, Jose M
dc.contributor.authorMartino, Juan
dc.contributor.authorVelasquez, Carlos
dc.contributor.authorMelendez-Asensio, Barbara
dc.contributor.authorde-Lope, Angel Rodriguez
dc.contributor.authorMoreno, Raquel
dc.contributor.authorBarcia, Juan A
dc.contributor.authorAsenjo, Beatriz
dc.contributor.authorBenavides, Manuel
dc.contributor.authorHerruzo, Ismael
dc.contributor.authorLara, Pedro C
dc.contributor.authorCabrera, Raquel
dc.contributor.authorAlbillo, David
dc.contributor.authorNavarro, Miguel
dc.contributor.authorPerez-Romasanta, Luis A
dc.contributor.authorRevert, Antonio
dc.contributor.authorArana, Estanislao
dc.contributor.authorPerez-Garcia, Victor M
dc.contributor.funderMinisterio de Economía y Competitividad/FEDER, Spain
dc.contributor.funderJames S. Mc. Donnell Foundation
dc.date.accessioned2023-01-25T10:26:17Z
dc.date.available2023-01-25T10:26:17Z
dc.date.issued2018-10-15
dc.description.abstractObjectives: We wished to determine whether tumor morphology descriptors obtained from pretreatment magnetic resonance images and clinical variables could predict survival for glioblastoma patients. Methods: A cohort of 404 glioblastoma patients (311 discoveries and 93 validations) was used in the study. Pretreatment volumetric postcontrast T1-weighted magnetic resonance images were segmented to obtain the relevant morphological measures. Kaplan-Meier, Cox proportional hazards, correlations, and Harrell’s concordance indexes (c-indexes) were used for the statistical analysis. Results: A linear prognostic model based on the outstanding variables (age, contrast-enhanced (CE) rim width, and surface regularity) identified a group of patients with significantly better survival (p < 0.001, HR = 2.57) with high accuracy (discovery c-index = 0.74; validation c-index = 0.77). A similar model applied to totally resected patients was also able to predict survival (p < 0.001, HR = 3.43) with high predictive value (discovery c-index = 0.81; validation c-index = 0.92). Biopsied patients with better survival were well identified (p < 0.001, HR = 7.25) by a model including age and CE volume (c-index = 0.87). Conclusions: Simple linear models based on small sets of meaningful MRI-based pretreatment morphological features and age predicted survival of glioblastoma patients to a high degree of accuracy. The partition of the population using the extent of resection improved the prognostic value of those measures.
dc.description.versionSi
dc.identifier.citationPérez-Beteta J, Molina-García D, Martínez-González A, Henares-Molina A, Amo-Salas M, Luque B, et al. Morphological MRI-based features provide pretreatment survival prediction in glioblastoma. Eur Radiol. 2019 Apr;29(4):1968-1977
dc.identifier.doi10.1007/s00330-018-5758-7
dc.identifier.essn1432-1084
dc.identifier.pmid30547198
dc.identifier.unpaywallURLhttps://link.springer.com/content/pdf/10.1007/s00330-018-5870-8.pdf
dc.identifier.urihttp://hdl.handle.net/10668/13310
dc.issue.number5
dc.journal.titleEuropean radiology
dc.journal.titleabbreviationEur Radiol
dc.language.isoen
dc.organizationHospital Universitario Regional de Málaga
dc.page.number10
dc.provenanceRealizada la curación de contenido 27/03/2025
dc.publisherSpringer
dc.pubmedtypeJournal Article
dc.relation.projectIDMTM2015-71200-R
dc.relation.publisherversionhttps://dx.doi.org/10.1007/s00330-018-5758-7
dc.rights.accessRightsRestricted Access
dc.subjectGlioblastoma
dc.subjectPrognosis
dc.subjectBiomarkers
dc.subjectSurvival analysis
dc.subjectMultivariate analysis
dc.subject.decsDescriptores
dc.subject.decsEspectroscopía de Resonancia Magnética
dc.subject.decsNeoplasias
dc.subject.decsImagen por Resonancia Magnética
dc.subject.decsModelos Lineales
dc.subject.meshPrognosis
dc.subject.meshLinear Models
dc.subject.meshBiopsy
dc.subject.meshMagnetic Resonance Imaging
dc.titleMorphological MRI-based features provide pretreatment survival prediction in glioblastoma.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number29
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RISalud_Accesorestringido.pdf
Size:
93.39 KB
Format:
Adobe Portable Document Format