Publication:
Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19

dc.contributor.authorRubio-Rivas, Manuel
dc.contributor.authorCorbella, Xavier
dc.contributor.authorMora-Luján, José María
dc.contributor.authorLoureiro-Amigo, Jose
dc.contributor.authorLópez Sampalo, Almudena
dc.contributor.authorYera Bergua, Carmen
dc.contributor.authorEsteve Atiénzar, Pedro Jesús
dc.contributor.authorDíez García, Luis Felipe
dc.contributor.authorGonzalez Ferrer, Ruth
dc.contributor.authorPlaza Canteli, Susana
dc.contributor.authorPérez Piñeiro, Antía
dc.contributor.authorCortés Rodríguez, Begoña
dc.contributor.authorJorquer Vidal, Leyre
dc.contributor.authorPérez Catalán, Ignacio
dc.contributor.authorLeón Téllez, Marta
dc.contributor.authorMartín Oterino, José Ángel
dc.contributor.authorMartín González, María Candelaria
dc.contributor.authorSerrano Carrillo de Albornoz, José Luis
dc.contributor.authorGarcía Sardon, Eva
dc.contributor.authorAlcalá Pedrajas, José Nicolás
dc.contributor.authorMartin-Urda Diez-Canseco, Anabel
dc.contributor.authorEsteban Giner, María José
dc.contributor.authorTellería Gómez, Pablo
dc.contributor.authorRamos-Rincón, José Manuel
dc.contributor.authorGómez-Huelgas, Ricardo
dc.contributor.authoraffiliation[Rubio-Rivas,M; Corbella,X; Mora-Luján,JM] Department of Internal Medicine, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, University of Barcelona, Barcelona, Spain. [Corbella,X] Hestia Chair in Integrated Health and Social Care, School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain. [Loureiro-Amigo,J] Internal Medicine Department, Moisès Broggi Hospital, Sant Joan Despí, Barcelona, Spain. [López Sampalo,A] Internal Medicine Department, Regional University Hospital of Málaga, Málaga, Spain. [Yera Bergua,C] Internal Medicine Department, Virgen de la Salud Hospital, Toledo, Spain. [Esteve Atiénzar,PJ] Internal Medicine Department, San Juan de Alicante University Hospital, San Juan de Alicante, Alicante, Spain. [Díez García,LF] Internal Medicine Department, Torrecárdenas Hospital, Almería, Spain. [Gonzalez Ferrer,R] Internal Medicine Department, Tajo Hospital, Aranjuez, Madrid, Spain. [Plaza Canteli,S] Internal Medicine Department, Severo Ochoa University Hospital, Leganés, Madrid, Spain. [Pérez Piñeiro,A] Internal Medicine Department, Valle del Nalón Hospital, Riaño, Langreo, Asturias, Spain. [Cortés Rodríguez,B] Internal Medicine Department, Alto Guadalquivir Hospital, Andújar, Jaén, Spain. [Jorquer Vidal,L] Internal Medicine Department, Francesc de Borja Hospital, Gandia, Valencia, Spain. [Pérez Catalán,I] Internal Medicine Department, Castellón General University Hospital, Castellón de la Plana, Spain. [León Téllez,M] Internal Medicine Department, Santa Bárbara Hospital, Soria, Spain. [Martín Oterino,JA] Internal Medicine Department, Salamanca University Hospital Complex, Salamanca, Spain. [Martín González,MC] Internal Medicine Department, Canarias University Hospital, Santa Cruz de Tenerife, Spain. [Serrano Carrillo de Albornoz,JL] Internal Medicine Department, Poniente Hospital, Almería, Spain. [García Sardon,E] Internal Medicine Department, San Pedro de Alcántara Hospital, Cáceres, Spain. [Alcalá Pedrajas,JN] Internal Medicine Department, Pozoblanco Hospital, Pozoblanco, Córdoba, Spain. [Martin-Urda Diez-Canseco,A] Internal Medicine Department, Palamós Hospital, Palamós, Girona, Spain. [Esteban Giner,MJ] Internal Medicine Department, Virgen de los Lirios Hospital, Alcoy, Alicante, Spain. [Tellería Gómez,P] Internal Medicine Department, Valladolid Clinical University Hospital, Valladolid, Spain. [Ramos-Rincón,JM] Department of Clinical Medicine, Miguel Hernandez University of Elche, Alicante, Spain. [Gómez-Huelgas,R] Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.
dc.date.accessioned2021-05-31T10:49:11Z
dc.date.available2021-05-31T10:49:11Z
dc.date.issued2020-10-29
dc.description.abstract(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; p < 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson's index, heart rate and respiratory rate upon admission >20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.es_ES
dc.description.versionYeses_ES
dc.format.extent19 p.es_ES
dc.identifier.citationRubio-Rivas M, Corbella X, Mora-Luján JM, Loureiro-Amigo J, López Sampalo A, Yera Bergua C, et al. Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19. J Clin Med. 2020 Oct 29;9(11):3488.es_ES
dc.identifier.doi10.3390/jcm9113488es_ES
dc.identifier.essn2077-0383
dc.identifier.pmcPMC7693215
dc.identifier.pmid33137919es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3353
dc.journal.titleJournal of Clinical Medicine
dc.language.isoen
dc.publisherMDPIes_ES
dc.relation.publisherversionhttps://www.mdpi.com/2077-0383/9/11/3488es_ES
dc.rights.accessRightsopen access
dc.subjectCOVID-19es_ES
dc.subjectCluster analysises_ES
dc.subjectPrognosises_ES
dc.subjectPhenotypees_ES
dc.subjectAnálisis por conglomeradoses_ES
dc.subjectPronósticoes_ES
dc.subjectFenotipoes_ES
dc.subject.meshMedical Subject Headings::Diseases::Virus Diseases::RNA Virus Infections::Nidovirales Infections::Coronaviridae Infections::Coronavirus Infectionses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Cluster Analysises_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Prognosises_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Phenotypees_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Diseases::Virus Diseases::Pneumonia, Virales_ES
dc.subject.meshMedical Subject Headings::Diseases::Respiratory Tract Diseases::Respiration Disorders::Respiratory Insufficiencyes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Circulatory and Respiratory Physiological Phenomena::Respiratory Physiological Phenomena::Respiratory Physiological Processes::Respiration::Respiratory Ratees_ES
dc.subject.meshMedical Subject Headings::Health Care::Health Care Quality, Access, and Evaluation::Quality of Health Care::Health Care Evaluation Mechanisms::Statistics as Topic::Cluster Analysises_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Circulatory and Respiratory Physiological Phenomena::Respiratory Physiological Phenomena::Respiratory Physiological Processes::Respiration::Respiratory Ratees_ES
dc.subject.meshMedical Subject Headings::Persons::Persons::Patientses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Therapeutics::Patient Care::Hospitalizationes_ES
dc.subject.meshMedical Subject Headings::Geographical Locations::Geographic Locations::Europe::Spaines_ES
dc.subject.meshMedical Subject Headings::Diseases::Respiratory Tract Diseases::Lung Diseases::Lung Diseases, Obstructive::Pulmonary Disease, Chronic Obstructivees_ES
dc.titlePredicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19es_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RubioRivas_PredictingClinical.pdf
Size:
486.24 KB
Format:
Adobe Portable Document Format
Description:
Artículo publicado