Publication:
Aggregation of Convolutional Neural Network Estimations of Homographies by Color Transformations of the Inputs

dc.contributor.authorMolina-Cabello, Miguel A.
dc.contributor.authorElizondo, David A.
dc.contributor.authorMarcos Luque-Baena, Rafael
dc.contributor.authorLopez-Rubio, Ezequiel
dc.contributor.authoraffiliation[Molina-Cabello, Miguel A.] Univ Malaga, Dept Comp Languages & Comp Sci, Malaga 29071, Spain
dc.contributor.authoraffiliation[Marcos Luque-Baena, Rafael] Univ Malaga, Dept Comp Languages & Comp Sci, Malaga 29071, Spain
dc.contributor.authoraffiliation[Lopez-Rubio, Ezequiel] Univ Malaga, Dept Comp Languages & Comp Sci, Malaga 29071, Spain
dc.contributor.authoraffiliation[Molina-Cabello, Miguel A.] Biomed Res Inst Malaga IBIMA, Malaga 29010, Spain
dc.contributor.authoraffiliation[Marcos Luque-Baena, Rafael] Biomed Res Inst Malaga IBIMA, Malaga 29010, Spain
dc.contributor.authoraffiliation[Lopez-Rubio, Ezequiel] Biomed Res Inst Malaga IBIMA, Malaga 29010, Spain
dc.contributor.authoraffiliation[Elizondo, David A.] De Montfort Univ, Dept Comp Technol, Leicester LE1 9BH, Leics, England
dc.contributor.funderMinistry of Economy and Competitiveness of Spain
dc.contributor.funderMinistry of Science, Innovation and Universities of Spain
dc.contributor.funderAutonomous Government of Andalusia, Spain, through the Project Detection of Anomalous Behavior Agents by the Deep Learning in Low Cost Video Surveillance Intelligent Systems
dc.contributor.funderEuropean Regional Development Fund (ERDF)
dc.date.accessioned2023-02-12T02:21:29Z
dc.date.available2023-02-12T02:21:29Z
dc.date.issued2020-01-01
dc.description.abstractThe standard approach to the estimation of homographies consists in the application of the RANSAC algorithm to a set of tentative matches. More recent strategies based on deep learning, namely convolutional architectures, have become available. In this work, a new algorithm for the estimation of homographies is developed. It is rooted in a convolutional neural network for homography estimation, which is provided with a range of versions of the input pair of pictures. Such versions are generated by perturbation of the color levels of the input images. Each generated pair of images yields a distinct estimation of the homography, and then the estimations are combined together to obtain a final, more robust estimation. Experiments have been designed and carried out to test the validity of our approach, including qualitative and quantitative performance measures. In particular, it is demonstrated that our approach consistently outperforms the baseline approach consisting of using the output of the homography estimation deep network for the original input pair of images.
dc.identifier.doi10.1109/ACCESS.2020.2990744
dc.identifier.issn2169-3536
dc.identifier.unpaywallURLhttps://ieeexplore.ieee.org/ielx7/6287639/8948470/09079501.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18970
dc.identifier.wosID549841400001
dc.journal.titleIeee access
dc.journal.titleabbreviationIeee access
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number79552-79560
dc.publisherIeee-inst electrical electronics engineers inc
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDeep convolutional neural networks
dc.subjecthomography estimation
dc.subjectcolor transformations
dc.subjectDeep homography
dc.subjectAlgorithm
dc.subjectSports
dc.titleAggregation of Convolutional Neural Network Estimations of Homographies by Color Transformations of the Inputs
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number8
dc.wostypeArticle
dspace.entity.typePublication

Files