Publication:
In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering.

dc.contributor.authorBonhome-Espinosa, Ana Belen
dc.contributor.authorCampos, Fernando
dc.contributor.authorDurand-Herrera, Daniel
dc.contributor.authorSanchez-Lopez, Jose Dario
dc.contributor.authorSchaub, Sebastien
dc.contributor.authorDuran, Juan D G
dc.contributor.authorLopez-Lopez, Modesto T
dc.contributor.authorCarriel, Victor
dc.date.accessioned2023-02-08T14:43:18Z
dc.date.available2023-02-08T14:43:18Z
dc.date.issued2020
dc.description.abstractThe encapsulation of cells into biopolymer matrices enables the preparation of engineered substitute tissues. Here we report the generation of novel 3D magnetic biomaterials by encapsulation of magnetic nanoparticles and human hyaline chondrocytes within fibrin-agarose hydrogels, with potential use as articular hyaline cartilage-like tissues. By rheological measurements we observed that, (i) the incorporation of magnetic nanoparticles resulted in increased values of the storage and loss moduli for the different times of cell culture; and (ii) the incorporation of human hyaline chondrocytes into nonmagnetic and magnetic fibrin-agarose biomaterials produced a control of their swelling capacity in comparison with acellular nonmagnetic and magnetic fibrin-agarose biomaterials. Interestingly, the in vitro viability and proliferation results showed that the inclusion of magnetic nanoparticles did not affect the cytocompatibility of the biomaterials. What is more, immunohistochemistry showed that the inclusion of magnetic nanoparticles did not negatively affect the expression of type II collagen of the human hyaline chondrocytes. Summarizing, our results suggest that the generation of engineered hyaline cartilage-like tissues by using magnetic fibrin-agarose hydrogels is feasible. The resulting artificial tissues combine a stronger and stable mechanical response, with promising in vitro cytocompatibility. Further research would be required to elucidate if for longer culture times additional features typical of the extracellular matrix of cartilage could be expressed by human hyaline chondrocytes within magnetic fibrin-agarose hydrogels.
dc.identifier.citationBonhome-Espinosa AB, Campos F, Durand-Herrera D, Sánchez-López JD, Schaub S, Durán JDG, et al. In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J Mech Behav Biomed Mater. 2020 Apr;104:103619.
dc.identifier.doi10.1016/j.jmbbm.2020.103619
dc.identifier.essn1878-0180
dc.identifier.pmid32174386
dc.identifier.unpaywallURLhttps://digibug.ugr.es/bitstream/10481/67762/1/revised%20manuscript_digibug.pdf
dc.identifier.urihttp://hdl.handle.net/10668/15242
dc.journal.titleJournal of the mechanical behavior of biomedical materials
dc.journal.titleabbreviationJ Mech Behav Biomed Mater
dc.language.isoen
dc.organizationHospital Universitario San Cecilio
dc.organizationHospital Universitario Virgen de las Nieves
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.number22
dc.provenanceRealizada curación de contenido 21/01/2025
dc.publisherElsevier BV
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.publisherversionhttps://linkinghub.elsevier.com/retrieve/pii/S1751-6161(19)31307-4
dc.rights.accessRightsRestricted Access
dc.subjectBiomechanical properties
dc.subjectCell-biomaterial interactions
dc.subjectFibrin-agarose
dc.subjectHyaline cartilage
dc.subjectMagnetic nanoparticles
dc.subjectTissue engineering
dc.subject.decsSefarosa
dc.subject.decsIngeniería de tejidos
dc.subject.decsHumanos
dc.subject.decsHidrogeles
dc.subject.decsFibrina
dc.subject.decsFenómenos magnéticos
dc.subject.decsCélulas cultivadas
dc.subject.decsCondrocitos
dc.subject.decsCartílago articular
dc.subject.meshCartilage, Articular
dc.subject.meshCells, Cultured
dc.subject.meshChondrocytes
dc.subject.meshFibrin
dc.subject.meshHumans
dc.subject.meshHydrogels
dc.subject.meshMagnetic Phenomena
dc.subject.meshSepharose
dc.subject.meshTissue Engineering
dc.titleIn vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering.
dc.typeresearch article
dc.type.hasVersionAM
dc.volume.number104
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RISalud_Accesorestringido.pdf
Size:
93.39 KB
Format:
Adobe Portable Document Format