Publication: eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research
dc.contributor.author | Anguita-Ruiz, Augusto | |
dc.contributor.author | Segura-Delgado, Alberto | |
dc.contributor.author | Alcalá, Rafael | |
dc.contributor.author | Aguilera, Concepción M. | |
dc.contributor.author | Alcalá-Fdez, Jesús | |
dc.contributor.authoraffiliation | [Anguita-Ruiz,A; Aguilera,CM] Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "Jose´ Mataix", Center of Biomedical Research, University of Granada, Granada, Spain. [Anguita-Ruiz,A; Aguilera,CM] Instituto de Investigacio´n Biosanitaria ibs.GRANADA, Granada, Spain. [Anguita-Ruiz,A; Aguilera,CM] CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. [Segura-Delgado,A; Alcalá,R; Alcalá-Fdez,J] Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain. | |
dc.contributor.funder | This work was supported by the Mapfre Foundation (“Research grants by Ignacio H. de Larramendi 2017”) and by the Regional Government of Andalusia ("Plan Andaluz de investigación, desarrollo e innovación (2018), P18- RT-2248"). The authors also acknowledge the Institute of Health Carlos III for personal funding: Contratos i-PFIS: doctorados IIS-empresa en ciencias y tecnologías de la salud de la convocatoria 2017 de la Acción Estratégica en Salud 2013–2016, Project number: IFI17/00048. | |
dc.date.accessioned | 2022-08-04T06:36:59Z | |
dc.date.available | 2022-08-04T06:36:59Z | |
dc.date.issued | 2020-04-10 | |
dc.description.abstract | Until date, several machine learning approaches have been proposed for the dynamic modeling of temporal omics data. Although they have yielded impressive results in terms of model accuracy and predictive ability, most of these applications are based on "Black-box" algorithms and more interpretable models have been claimed by the research community. The recent eXplainable Artificial Intelligence (XAI) revolution offers a solution for this issue, were rule-based approaches are highly suitable for explanatory purposes. The further integration of the data mining process along with functional-annotation and pathway analyses is an additional way towards more explanatory and biologically soundness models. In this paper, we present a novel rule-based XAI strategy (including pre-processing, knowledge-extraction and functional validation) for finding biologically relevant sequential patterns from longitudinal human gene expression data (GED). To illustrate the performance of our pipeline, we work on in vivo temporal GED collected within the course of a long-term dietary intervention in 57 subjects with obesity (GSE77962). As validation populations, we employ three independent datasets following the same experimental design. As a result, we validate primarily extracted gene patterns and prove the goodness of our strategy for the mining of biologically relevant gene-gene temporal relations. Our whole pipeline has been gathered under open-source software and could be easily extended to other human temporal GED applications. | es_ES |
dc.description.version | Yes | es_ES |
dc.identifier.citation | Anguita-Ruiz A, Segura-Delgado A, Alcalá R, Aguilera CM, Alcalá-Fdez J. eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research. PLoS Comput Biol. 2020 Apr 10;16(4):e1007792 | es_ES |
dc.identifier.doi | 10.1371/journal.pcbi.1007792 | es_ES |
dc.identifier.essn | 1553-7358 | |
dc.identifier.pmc | PMC7176286 | |
dc.identifier.pmid | 32275707 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10668/3873 | |
dc.journal.title | PLOS Computational Biology | |
dc.language.iso | en | |
dc.page.number | 34 p. | |
dc.publisher | Public Library of Science | es_ES |
dc.relation.publisherversion | https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007792 | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.accessRights | Acceso abierto | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Artificial Intelligence | es_ES |
dc.subject | Gene expression | es_ES |
dc.subject | Obesity | es_ES |
dc.subject | Knowledge | es_ES |
dc.subject | Mining | es_ES |
dc.subject | Transcriptome | es_ES |
dc.subject | Inteligencia artificial | es_ES |
dc.subject | Expresión génica | es_ES |
dc.subject | Obesidad | es_ES |
dc.subject | Conocimiento | es_ES |
dc.subject | Minería de datos | es_ES |
dc.subject | Transcriptoma | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithms | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Computing Methodologies::Artificial Intelligence | es_ES |
dc.subject.mesh | Medical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Computational Biology | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Medical Informatics::Medical Informatics Applications::Information Storage and Retrieval::Data Mining | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Medical Informatics::Medical Informatics Applications::Information Systems::Databases as Topic::Databases, Factual::Databases, Genetic | es_ES |
dc.subject.mesh | Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Genetic Techniques::Gene Expression Profiling | es_ES |
dc.subject.mesh | Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Epidemiologic Studies::Cohort Studies::Longitudinal Studies | es_ES |
dc.subject.mesh | Medical Subject Headings::Diseases::Nutritional and Metabolic Diseases::Nutrition Disorders::Overnutrition::Obesity | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Computing Methodologies::Software | es_ES |
dc.subject.mesh | Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Structures::Transcriptome | es_ES |
dc.title | eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research | es_ES |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 5 of 13
Loading...
- Name:
- AnguitaRuiz_eXplainableArtificial.pdf
- Size:
- 2.68 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo publicado
Loading...
- Name:
- AnguitaRuiz_eXplainableArtificial_Figura1.tif
- Size:
- 812.77 KB
- Format:
- Tag Image File Format
- Description:
- Material suplementario
Loading...
- Name:
- AnguitaRuiz_eXplainableArtificial_Figura2.tif
- Size:
- 358.91 KB
- Format:
- Tag Image File Format
- Description:
- Material suplementario
Loading...
- Name:
- AnguitaRuiz_eXplainableArtificial_Figura3.tif
- Size:
- 633.07 KB
- Format:
- Tag Image File Format
- Description:
- Material suplementario
Loading...
- Name:
- AnguitaRuiz_eXplainableArtificial_Figura4.tif
- Size:
- 9.83 MB
- Format:
- Tag Image File Format
- Description:
- Material suplementario