Publication:
eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research

dc.contributor.authorAnguita-Ruiz, Augusto
dc.contributor.authorSegura-Delgado, Alberto
dc.contributor.authorAlcalá, Rafael
dc.contributor.authorAguilera, Concepción M.
dc.contributor.authorAlcalá-Fdez, Jesús
dc.contributor.authoraffiliation[Anguita-Ruiz,A; Aguilera,CM] Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "Jose´ Mataix", Center of Biomedical Research, University of Granada, Granada, Spain. [Anguita-Ruiz,A; Aguilera,CM] Instituto de Investigacio´n Biosanitaria ibs.GRANADA, Granada, Spain. [Anguita-Ruiz,A; Aguilera,CM] CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. [Segura-Delgado,A; Alcalá,R; Alcalá-Fdez,J] Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain.
dc.contributor.funderThis work was supported by the Mapfre Foundation (“Research grants by Ignacio H. de Larramendi 2017”) and by the Regional Government of Andalusia ("Plan Andaluz de investigación, desarrollo e innovación (2018), P18- RT-2248"). The authors also acknowledge the Institute of Health Carlos III for personal funding: Contratos i-PFIS: doctorados IIS-empresa en ciencias y tecnologías de la salud de la convocatoria 2017 de la Acción Estratégica en Salud 2013–2016, Project number: IFI17/00048.
dc.date.accessioned2022-08-04T06:36:59Z
dc.date.available2022-08-04T06:36:59Z
dc.date.issued2020-04-10
dc.description.abstractUntil date, several machine learning approaches have been proposed for the dynamic modeling of temporal omics data. Although they have yielded impressive results in terms of model accuracy and predictive ability, most of these applications are based on "Black-box" algorithms and more interpretable models have been claimed by the research community. The recent eXplainable Artificial Intelligence (XAI) revolution offers a solution for this issue, were rule-based approaches are highly suitable for explanatory purposes. The further integration of the data mining process along with functional-annotation and pathway analyses is an additional way towards more explanatory and biologically soundness models. In this paper, we present a novel rule-based XAI strategy (including pre-processing, knowledge-extraction and functional validation) for finding biologically relevant sequential patterns from longitudinal human gene expression data (GED). To illustrate the performance of our pipeline, we work on in vivo temporal GED collected within the course of a long-term dietary intervention in 57 subjects with obesity (GSE77962). As validation populations, we employ three independent datasets following the same experimental design. As a result, we validate primarily extracted gene patterns and prove the goodness of our strategy for the mining of biologically relevant gene-gene temporal relations. Our whole pipeline has been gathered under open-source software and could be easily extended to other human temporal GED applications.es_ES
dc.description.versionYeses_ES
dc.identifier.citationAnguita-Ruiz A, Segura-Delgado A, Alcalá R, Aguilera CM, Alcalá-Fdez J. eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research. PLoS Comput Biol. 2020 Apr 10;16(4):e1007792es_ES
dc.identifier.doi10.1371/journal.pcbi.1007792es_ES
dc.identifier.essn1553-7358
dc.identifier.pmcPMC7176286
dc.identifier.pmid32275707es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3873
dc.journal.titlePLOS Computational Biology
dc.language.isoen
dc.page.number34 p.
dc.publisherPublic Library of Sciencees_ES
dc.relation.publisherversionhttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007792es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsAcceso abiertoes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial Intelligencees_ES
dc.subjectGene expressiones_ES
dc.subjectObesityes_ES
dc.subjectKnowledgees_ES
dc.subjectMininges_ES
dc.subjectTranscriptomees_ES
dc.subjectInteligencia artificiales_ES
dc.subjectExpresión génicaes_ES
dc.subjectObesidades_ES
dc.subjectConocimientoes_ES
dc.subjectMinería de datoses_ES
dc.subjectTranscriptomaes_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithmses_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Artificial Intelligencees_ES
dc.subject.meshMedical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Computational Biologyes_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Medical Informatics::Medical Informatics Applications::Information Storage and Retrieval::Data Mininges_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Medical Informatics::Medical Informatics Applications::Information Systems::Databases as Topic::Databases, Factual::Databases, Genetices_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processeses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Genetic Techniques::Gene Expression Profilinges_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Epidemiologic Studies::Cohort Studies::Longitudinal Studieses_ES
dc.subject.meshMedical Subject Headings::Diseases::Nutritional and Metabolic Diseases::Nutrition Disorders::Overnutrition::Obesityes_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Softwarees_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Structures::Transcriptomees_ES
dc.titleeXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity researches_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 5 of 13
Loading...
Thumbnail Image
Name:
AnguitaRuiz_eXplainableArtificial.pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado
Loading...
Thumbnail Image
Name:
AnguitaRuiz_eXplainableArtificial_Figura1.tif
Size:
812.77 KB
Format:
Tag Image File Format
Description:
Material suplementario
Loading...
Thumbnail Image
Name:
AnguitaRuiz_eXplainableArtificial_Figura2.tif
Size:
358.91 KB
Format:
Tag Image File Format
Description:
Material suplementario
Loading...
Thumbnail Image
Name:
AnguitaRuiz_eXplainableArtificial_Figura3.tif
Size:
633.07 KB
Format:
Tag Image File Format
Description:
Material suplementario
Loading...
Thumbnail Image
Name:
AnguitaRuiz_eXplainableArtificial_Figura4.tif
Size:
9.83 MB
Format:
Tag Image File Format
Description:
Material suplementario