Publication:
Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzer

dc.contributor.authorRojano, Elena
dc.contributor.authorCórdoba-Caballero, José
dc.contributor.authorJabato, Fernando M.
dc.contributor.authorGallego, Diana
dc.contributor.authorSerrano, Mercedes
dc.contributor.authorPérez, Belén
dc.contributor.authorParés-Aguilar, Álvaro
dc.contributor.authorPerkins, James R.
dc.contributor.authorRanea, Juan A G.
dc.contributor.authorSeoane-Zonjic, Pedro
dc.contributor.authoraffiliation[Rojano,E; Córdoba-Caballero,J; Parés-Aguilar,Á; Perkins,JR; Ranea,JAG; Seoane-Zonjic,P] Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Spain. [Rojano,E; Jabato,FM; Perkins,JR; Ranea,JAG; Seoane-Zonjic,P] Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain. [Jabato,FM] Supercomputation and Bioinformatics (SCBI), University of Malaga, Malaga, Spain. [Jabato,FM] LifeWatch-ERIC, Seville, Spain. [Gallego,D; Serrano,M; Pérez,B; Perkins,JR; Ranea,JAG; Seoane-Zonjic,P] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, Madrid, Spain. [Gallego,D; Pérez,B] Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain. [Gallego,D; Pérez,B] Instituto de Investigación Sanitaria idiPAZ, Madrid, Spain. [Serrano,M] Neuropediatric Department, Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain.
dc.contributor.funderThis work was supported by The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund [PID2019-108096RB-C21]; the Andalusian Government with European Regional Development Fund [UMA18-FEDERJA-102 and PAIDI 2020:PY20-00372]; biomedicine research project [PI-0075-2017] (Fundación Progreso y Salud); the Carlos III Health Institute [PI19/01155]; the Madrid Government [B2017/BMD-3721]; the Ramón Areces foundation for rare disease investigation (National call for research on life and material sciences, XIX edition). We thank the patients and patients’ families for their collaboration and consent. PMM2-CDG research is supported by national grants from the National Plan on I+D+I, cofinanced by ISCIII (Subdirección General de Evaluación y Fomento de la Investigación Sanitaria) and FEDER (Fondo Europeo de Desarrollo Regional) [PI14/00021; PI17/00101 ]. Dr. Serrano’s research work is supported by a grant from the Generalitat de Catalunya [PERIS SLT008/18/00194]. The CIBERER is an initiative from the Carlos III Health Institute (Instituto de Salud Carlos III).
dc.date.accessioned2022-08-22T09:11:52Z
dc.date.available2022-08-22T09:11:52Z
dc.date.issued2021-07-27
dc.description.abstractExhaustive and comprehensive analysis of pathological traits is essential to understanding genetic diseases, performing precise diagnosis and prescribing personalized treatments. It is particularly important for disease cohorts, as thoroughly detailed phenotypic profiles allow patients to be compared and contrasted. However, many disease cohorts contain patients that have been ascribed low numbers of very general and relatively uninformative phenotypes. We present Cohort Analyzer, a tool that measures the phenotyping quality of patient cohorts. It calculates multiple statistics to give a general overview of the cohort status in terms of the depth and breadth of phenotyping, allowing us to detect less well-phenotyped patients for re-examining or excluding from further analyses. In addition, it performs clustering analysis to find subgroups of patients that share similar phenotypic profiles. We used it to analyse three cohorts of genetic diseases patients with very different properties. We found that cohorts with the most specific and complete phenotypic characterization give more potential insights into the disease than those that were less deeply characterised by forming more informative clusters. For two of the cohorts, we also analysed genomic data related to the patients, and linked the genomic data to the patient-subgroups by mapping shared variants to genes and functions. The work highlights the need for improved phenotyping in this era of personalized medicine. The tool itself is freely available alongside a workflow to allow the analyses shown in this work to be applied to other datasets.es_ES
dc.description.versionYeses_ES
dc.identifier.citationRojano E, Córdoba-Caballero J, Jabato FM, Gallego D, Serrano M, Pérez B, et al. Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzer. J Pers Med. 2021 Jul 27;11(8):730es_ES
dc.identifier.doi10.3390/jpm11080730es_ES
dc.identifier.essn2075-4426
dc.identifier.pmcPMC8398478
dc.identifier.pmid34442375es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3924
dc.journal.titleJournals of Personalized Medicine
dc.language.isoen
dc.page.number25 p.
dc.publisherMDPIes_ES
dc.relation.publisherversionhttps://www.mdpi.com/2075-4426/11/8/730/htmes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsAcceso abiertoes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGenetic diseaseses_ES
dc.subjectCohort analyzeres_ES
dc.subjectHuman phenotype ontologyes_ES
dc.subjectCluster analysises_ES
dc.subjectPhenotype quality assessmentes_ES
dc.subjectEnfermedades genéticas congénitases_ES
dc.subjectOntología de geneses_ES
dc.subjectAnálisis por gruposes_ES
dc.subjectFenotipoes_ES
dc.subjectGarantía de la calidad de atención de saludes_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Systems Analysis::Workflowes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Phenotypees_ES
dc.subject.meshMedical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Genetics::Genomicses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Cluster Analysises_ES
dc.titleEvaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzeres_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rojano_EvaluatingFiltering.pdf
Size:
3.66 MB
Format:
Adobe Portable Document Format
Description:
Artículo original
Loading...
Thumbnail Image
Name:
Rojano_EvaluatingFiltering_MaterialSuplementario.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
Material suplementario