Publication: Rapamycin administration is not a valid therapeutic strategy for every case of mitochondrial disease.
Loading...
Identifiers
Date
2019-03-18
Authors
Barriocanal-Casado, Eliana
Hidalgo-Gutiérrez, Agustín
Raimundo, Nuno
González-García, Pilar
Acuña-Castroviejo, Darío
Escames, Germaine
López, Luis C
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The vast majority of mitochondrial disorders have limited the clinical management to palliative care. Rapamycin has emerged as a potential therapeutic drug for mitochondrial diseases since it has shown therapeutic benefits in a few mouse models of mitochondrial disorders. However, the underlying therapeutic mechanism is unclear, the minimal effective dose needs to be defined and whether this therapy can be generally used is unknown. We have evaluated whether low and high doses of rapamycin administration may result in therapeutic effects in a mouse model (Coq9R239X) of mitochondrial encephalopathy due to CoQ deficiency. The evaluation involved phenotypic, molecular, image (histopathology and MRI), metabolomics, transcriptomics and bioenergetics analyses. Low dose of rapamycin induces metabolic changes in liver and transcriptomics modifications in midbrain. The high dose of rapamycin induces further changes in the transcriptomics profile in midbrain due to the general inhibition of mTORC1. However, neither low nor high dose of rapamycin were able to improve the mitochondrial bioenergetics, the brain injuries and the phenotypic characteristics of Coq9R239X mice, resulting in the lack of efficacy for increasing the survival. These results may be due to the lack of microgliosis-derived neuroinflammation, the limitation to induce autophagy, or the need of a functional CoQ-junction. Therefore, the translation of rapamycin therapy into the clinic for patients with mitochondrial disorders requires, at least, the consideration of the particularities of each mitochondrial disease. FUND: Supported by the grants from "Fundación Isabel Gemio - Federación Española de Enfermedades Neuromusculares - Federación FEDER" (TSR-1), the NIH (P01HD080642) and the ERC (Stg-337327).
Description
MeSH Terms
Animals
Autophagy
Cell Respiration
Disease Models, Animal
Gene Expression Profiling
Humans
Metabolomics
Mice
Mitochondria
Mitochondrial Diseases
Mitochondrial Encephalomyopathies
Phenotype
Sirolimus
Treatment Outcome
Ubiquinone
Autophagy
Cell Respiration
Disease Models, Animal
Gene Expression Profiling
Humans
Metabolomics
Mice
Mitochondria
Mitochondrial Diseases
Mitochondrial Encephalomyopathies
Phenotype
Sirolimus
Treatment Outcome
Ubiquinone
DeCS Terms
CIE Terms
Keywords
CoQ deficiency, Mitochondrial diseases, Mitochondrial encephalopathy, Mouse model, mTORC1