Publication:
Genetic and cellular sensitivity of Caenorhabditis elegans to the chemotherapeutic agent cisplatin.

dc.contributor.authorGarcía-Rodríguez, Francisco Javier
dc.contributor.authorMartínez-Fernández, Carmen
dc.contributor.authorBrena, David
dc.contributor.authorKukhtar, Dmytro
dc.contributor.authorSerrat, Xènia
dc.contributor.authorNadal, Ernest
dc.contributor.authorBoxem, Mike
dc.contributor.authorHonnen, Sebastian
dc.contributor.authorMiranda-Vizuete, Antonio
dc.contributor.authorVillanueva, Alberto
dc.contributor.authorCerón, Julián
dc.date.accessioned2023-01-25T10:08:38Z
dc.date.available2023-01-25T10:08:38Z
dc.date.issued2018-06-21
dc.description.abstractCisplatin and derivatives are commonly used as chemotherapeutic agents. Although the cytotoxic action of cisplatin on cancer cells is very efficient, clinical oncologists need to deal with two major difficulties, namely the onset of resistance to the drug and the cytotoxic effect in patients. Here, we used Caenorhabditis elegans to investigate factors influencing the response to cisplatin in multicellular organisms. In this hermaphroditic model organism, we observed that sperm failure is a major cause of cisplatin-induced infertility. RNA sequencing data indicate that cisplatin triggers a systemic stress response, in which DAF-16/FOXO and SKN-1/NRF2, two conserved transcription factors, are key regulators. We determined that inhibition of the DNA damage-induced apoptotic pathway does not confer cisplatin protection to the animal. However, mutants for the pro-apoptotic BH3-only gene ced-13 are sensitive to cisplatin, suggesting a protective role of the intrinsic apoptotic pathway. Finally, we demonstrated that our system can also be used to identify mutations providing resistance to cisplatin and therefore potential biomarkers of innate cisplatin-refractory patients. We show that mutants for the redox regulator trxr-1, ortholog of the mammalian thioredoxin reductase 1 TRXR1, display cisplatin resistance. By CRISPR/Cas9, we determined that such resistance relies on the presence of the single selenocysteine residue in TRXR-1.This article has an associated First Person interview with the first author of the paper.
dc.identifier.doi10.1242/dmm.033506
dc.identifier.essn1754-8411
dc.identifier.pmcPMC6031354
dc.identifier.pmid29752286
dc.identifier.unpaywallURLhttps://doi.org/10.1242/dmm.033506
dc.identifier.urihttp://hdl.handle.net/10668/12454
dc.issue.number6
dc.journal.titleDisease models & mechanisms
dc.journal.titleabbreviationDis Model Mech
dc.language.isoen
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.organizationHospital Universitario Virgen del Rocío
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCaenorhabditis elegans
dc.subjectCisplatin
dc.subjectRNA-seq
dc.subject.meshAnimals
dc.subject.meshAntineoplastic Agents
dc.subject.meshApoptosis
dc.subject.meshBiological Assay
dc.subject.meshCaenorhabditis elegans
dc.subject.meshCaenorhabditis elegans Proteins
dc.subject.meshCisplatin
dc.subject.meshMale
dc.subject.meshMutation, Missense
dc.subject.meshSequence Analysis, RNA
dc.subject.meshSpermatozoa
dc.subject.meshTranscription, Genetic
dc.titleGenetic and cellular sensitivity of Caenorhabditis elegans to the chemotherapeutic agent cisplatin.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication

Files