Publication:
Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co3O4-g-C3N4 nanomaterials for the oxygen evolution reaction.

dc.contributor.authorLeal-Rodríguez, Carlos
dc.contributor.authorRodríguez-Padrón, Daily
dc.contributor.authorAlothman, Zeid A
dc.contributor.authorCano, Manuel
dc.contributor.authorGiner-Casares, Juan J
dc.contributor.authorMuñoz-Batista, Mario J
dc.contributor.authorOsman, Sameh M
dc.contributor.authorLuque, Rafael
dc.date.accessioned2023-02-08T14:44:37Z
dc.date.available2023-02-08T14:44:37Z
dc.date.issued2020-04-03
dc.description.abstractThe oxygen evolution reaction (OER) plays a key role in the water splitting process and a high energy conversion efficiency is essential for the definitive advance of hydrogen-based technologies. Unfortunately, the green and sustainable development of electrocatalysts for water oxidation is nowadays a real challenge. Herein, a successful mechanochemical method is proposed for the synthesis of a novel hemoglobin (Hb) modified Co3O4/g-C3N4 composite nanomaterial. The controlled incorporation of cobalt entities as well as Hb functionalization, without affecting the g-C3N4 nanoarchitecture, was evaluated using different physicochemical techniques, such as X-ray diffraction, N2-physisorption, scanning electron microscopy, UV-visible spectroscopy and X-ray photoelectron spectroscopy. The beneficial effect of the resulting ternary bioconjugate together with the influence of the temperature and light irradiation was investigated by electrochemical analysis. At 60 °C and under light exposition, this electrocatalyst requires an overpotential of 370 mV to deliver a current density of 10 mA·cm-2, showing a Tafel slope of 66 mV·dec-1 and outstanding long-term stability for 600 OER cycles. This work paves a way for the controlled fabrication of multidimensional and multifunctional bio-electrocatalysts.
dc.identifier.doi10.1039/d0nr00818d
dc.identifier.essn2040-3372
dc.identifier.pmid32242199
dc.identifier.unpaywallURLhttp://helvia.uco.es/xmlui/bitstream/10396/21018/3/carlos_leal_nanoscale_%202020.pdf
dc.identifier.urihttp://hdl.handle.net/10668/15314
dc.issue.number15
dc.journal.titleNanoscale
dc.journal.titleabbreviationNanoscale
dc.language.isoen
dc.organizationIBS
dc.page.number8477-8484
dc.pubmedtypeJournal Article
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.meshCatalysis
dc.subject.meshCobalt
dc.subject.meshElectrochemical Techniques
dc.subject.meshGraphite
dc.subject.meshHemoglobins
dc.subject.meshLight
dc.subject.meshNanocomposites
dc.subject.meshNitrogen Compounds
dc.subject.meshOxidation-Reduction
dc.subject.meshOxides
dc.subject.meshOxygen
dc.subject.meshTemperature
dc.subject.meshWater
dc.titleThermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co3O4-g-C3N4 nanomaterials for the oxygen evolution reaction.
dc.typeresearch article
dc.type.hasVersionSMUR
dc.volume.number12
dspace.entity.typePublication

Files