Publication:
3D human pose estimation from depth maps using a deep combination of poses

dc.contributor.authorMarin-Jimenez, Manuel J.
dc.contributor.authorRomero-Ramirez, Francisco J.
dc.contributor.authorMunoz-Salinas, Rafael
dc.contributor.authorMedina-Carnicer, Rafael
dc.contributor.authoraffiliation[Marin-Jimenez, Manuel J.] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Romero-Ramirez, Francisco J.] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Munoz-Salinas, Rafael] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Medina-Carnicer, Rafael] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Marin-Jimenez, Manuel J.] Inst Maimonides Invest Biomed IMIBIC, Ave Menendez Pida1 S-N, Cordoba 14004, Spain
dc.contributor.authoraffiliation[Munoz-Salinas, Rafael] Inst Maimonides Invest Biomed IMIBIC, Ave Menendez Pida1 S-N, Cordoba 14004, Spain
dc.contributor.authoraffiliation[Medina-Carnicer, Rafael] Inst Maimonides Invest Biomed IMIBIC, Ave Menendez Pida1 S-N, Cordoba 14004, Spain
dc.contributor.funder(ISCIII) of Spain Ministry of Economy, Industry and Competitiveness
dc.contributor.funderFEDER
dc.contributor.funderSpain Ministry of Economy, Industry and Competitiveness
dc.contributor.funderFEDER
dc.date.accessioned2023-02-12T02:20:59Z
dc.date.available2023-02-12T02:20:59Z
dc.date.issued2018-07-17
dc.description.abstractMany real-world applications require the estimation of human body joints for higher-level tasks as, for example, human behaviour understanding. In recent years, depth sensors have become a popular approach to obtain three-dimensional information. The depth maps generated by these sensors provide information that can be employed to disambiguate the poses observed in two-dimensional images. This work addresses the problem of 3D human pose estimation from depth maps employing a Deep Learning approach. We propose a model, named Deep Depth Pose (DDP), which receives a depth map containing a person and a set of predefined 3D prototype poses and returns the 3D position of the body joints of the person. In particular, DDP is defined as a ConvNet that computes the specific weights needed to linearly combine the prototypes for the given input. We have thoroughly evaluated DDP on the challenging 'ITOP' and 'UBC3V' datasets, which respectively depict realistic and synthetic samples, defining a new state-of-the-art on them.
dc.description.sponsorshipThis project has been funded under projects TIN2016-75279-P and IFI16/00033 (ISCIII) of Spain Ministry of Economy, Industry and Competitiveness, and FEDER. Thanks to NVidia for donating the GPU Titan Xp used for the experiments presented in this work. We also thank Shafaei and Little for providing their error and precision results used in our comparative plots.
dc.description.versionSi
dc.identifier.citationMarín-Jiménez MJ, Romero-Ramirez FJ, Muñoz-Salinas R, Medina-Carnicer R. 3D human pose estimation from depth maps using a deep combination of poses. Journal Of Visual Communication And Image Representation [Internet]. 1 de agosto de 2018;55:627-39.
dc.identifier.doi10.1016/j.jvcir.2018.07.010
dc.identifier.essn1095-9076
dc.identifier.issn1047-3203
dc.identifier.unpaywallURLhttp://arxiv.org/pdf/1807.05389
dc.identifier.urihttp://hdl.handle.net/10668/18831
dc.identifier.wosID445318100053
dc.journal.titleJournal of visual communication and image representation
dc.journal.titleabbreviationJ. vis. commun. image represent.
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.page.number627-639
dc.publisherAcademic Press
dc.relation.projectIDTIN2016-75279-P
dc.relation.projectIDIFI16/00033
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S1047320318301718
dc.rights.accessRightsopen access
dc.subject3D human pose
dc.subjectBody limbs
dc.subjectDepth maps
dc.subjectConvNets
dc.subject.decsAprendizaje profundo
dc.subject.decsCuerpo humano
dc.subject.decsProcesamiento de imagen asistido por computador
dc.subject.decsRedes neurales de la computación
dc.subject.meshDeep learning
dc.subject.meshHuman body
dc.subject.meshNeural networks, computer
dc.subject.meshImage processing, computer-assisted
dc.title3D human pose estimation from depth maps using a deep combination of poses
dc.typeResearch article
dc.type.hasVersionSMUR
dc.volume.number55
dc.wostypeArticle
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RISalud_Accesorestringido.pdf
Size:
93.39 KB
Format:
Adobe Portable Document Format