Publication: A hypothesis-driven method based on machine learning for neuroimaging data analysis
dc.contributor.author | Gorriz, J. M. | |
dc.contributor.author | Martin-Clemente, R. | |
dc.contributor.author | Puntonet, C. G. | |
dc.contributor.author | Ortiz, A. | |
dc.contributor.author | Ramirez, J. | |
dc.contributor.author | Suckling, J. | |
dc.contributor.authoraffiliation | [Gorriz, J. M.] Univ Granada, DaSCI Inst, Granada, Spain | |
dc.contributor.authoraffiliation | [Ramirez, J.] Univ Granada, DaSCI Inst, Granada, Spain | |
dc.contributor.authoraffiliation | [SiPBA Grp] Univ Granada, DaSCI Inst, Granada, Spain | |
dc.contributor.authoraffiliation | [Gorriz, J. M.] Univ Cambridge, Dept Psychiat, Cambridge, England | |
dc.contributor.authoraffiliation | [Suckling, J.] Univ Cambridge, Dept Psychiat, Cambridge, England | |
dc.contributor.authoraffiliation | [Gorriz, J. M.] IbsGranada, Granada, Spain | |
dc.contributor.authoraffiliation | [Puntonet, C. G.] Univ Granada, Dept Comp Architecture & Technol, Granada, Spain | |
dc.contributor.authoraffiliation | [Martin-Clemente, R.] Univ Seville, Dept Signal Theory & Commun, Seville, Spain | |
dc.contributor.authoraffiliation | [Ortiz, A.] Univ Malaga, Dept Commun Engn, Malaga, Spain | |
dc.contributor.funder | MCIN/AEI/10.13039/501100011033 | |
dc.contributor.funder | FEDER | |
dc.contributor.funder | Junta de Andalucia (Consejeria de Economia, Conocimiento, Empresas y Universidad) | |
dc.contributor.group | SiPBA Grp | |
dc.date.accessioned | 2023-05-03T15:11:46Z | |
dc.date.available | 2023-05-03T15:11:46Z | |
dc.date.issued | 2022-09-03 | |
dc.description.abstract | There remains an open question about the usefulness and the interpretation of machine learning (ML) approaches for discrimination of spatial patterns of brain images between samples or activation states. In the last few decades, these approaches have limited their operation to feature extraction and linear classification tasks for between-group inference. In this context, statistical inference is assessed by ran-domly permuting image labels or by the use of random effect models that consider between-subject vari-ability. These multivariate ML-based statistical pipelines, whilst potentially more effective for detecting activations than hypotheses-driven methods, have lost their mathematical elegance, ease of interpreta-tion, and spatial localization of the ubiquitous General linear Model (GLM). Recently, the estimation of the conventional GLM parameters has been demonstrated to be connected to an univariate classification task when the design matrix in the GLM is expressed as a binary indicator matrix. In this paper we explore the complete connection between the univariate GLM and ML-based regressions. To this purpose we derive a refined statistical test with the GLM based on the parameters obtained by a linear Support Vector Regression (SVR) in the inverse problem (SVR-iGLM). Subsequently, random field theory (RFT) is employed for assessing statistical significance following a conventional GLM benchmark. Experimental results demonstrate how parameter estimations derived from each model (mainly GLM and SVR) result in different experimental design estimates that are significantly related to the predefined functional task. Moreover, using real data from a multisite initiative the proposed ML-based inference demonstrates sta-tistical power and the control of false positives, outperforming the regular GLM. | |
dc.description.version | Si | |
dc.identifier.citation | J.M. Gorriz, R. Martín-Clemente, C.G. Puntonet, A. Ortiz, J. Ramírez, SiPBA group, J. Suckling, A hypothesis-driven method based on machine learning for neuroimaging data analysis, Neurocomputing, Volume 510, 2022, Pages 159-171, ISSN 0925-2312, | |
dc.identifier.doi | 10.1016/j.neucom.2022.09.001 | |
dc.identifier.essn | 1872-8286 | |
dc.identifier.issn | 0925-2312 | |
dc.identifier.unpaywallURL | https://doi.org/10.1016/j.neucom.2022.09.001 | |
dc.identifier.uri | http://hdl.handle.net/10668/22421 | |
dc.identifier.wosID | 862258000014 | |
dc.journal.title | Neurocomputing | |
dc.journal.titleabbreviation | Neurocomputing | |
dc.language.iso | en | |
dc.organization | Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA) | |
dc.page.number | 159-171 | |
dc.publisher | Elsevier BV | |
dc.relation.projectID | RTI2018 | |
dc.relation.projectID | 098913 | |
dc.relation.projectID | B100 | |
dc.relation.projectID | CV20-45250 | |
dc.relation.projectID | A-TIC-080-UGR18 | |
dc.relation.projectID | B-TIC-586-UGR20 | |
dc.relation.projectID | P20-00525 | |
dc.relation.projectID | US-1264994 US/JUNTA/FEDER, UE | |
dc.relation.publisherversion | sciencedirect.com/science/article/pii/S0925231222010876?via%3Dihub#ak005 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | General Linear Model | |
dc.subject | Linear Regression Model | |
dc.subject | Support Vector Regression | |
dc.subject | permutation tests | |
dc.subject | Magnetic Resonance Imaging | |
dc.subject | Random Field Theory | |
dc.subject | Support vector machine | |
dc.subject | Functional mri | |
dc.subject | Diagnosis | |
dc.subject | Framework | |
dc.subject.decs | Aprendizaje automático | |
dc.subject.decs | Benchmarking | |
dc.subject.decs | Encéfalo | |
dc.subject.decs | Modelos lineales | |
dc.subject.decs | Proyectos de investigación | |
dc.subject.mesh | Linear Models | |
dc.subject.mesh | Benchmarking | |
dc.subject.mesh | Research Design | |
dc.subject.mesh | Brain | |
dc.subject.mesh | Machine Learning | |
dc.title | A hypothesis-driven method based on machine learning for neuroimaging data analysis | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 510 | |
dc.wostype | Article | |
dspace.entity.type | Publication |