Publication:
A hypothesis-driven method based on machine learning for neuroimaging data analysis

dc.contributor.authorGorriz, J. M.
dc.contributor.authorMartin-Clemente, R.
dc.contributor.authorPuntonet, C. G.
dc.contributor.authorOrtiz, A.
dc.contributor.authorRamirez, J.
dc.contributor.authorSuckling, J.
dc.contributor.authoraffiliation[Gorriz, J. M.] Univ Granada, DaSCI Inst, Granada, Spain
dc.contributor.authoraffiliation[Ramirez, J.] Univ Granada, DaSCI Inst, Granada, Spain
dc.contributor.authoraffiliation[SiPBA Grp] Univ Granada, DaSCI Inst, Granada, Spain
dc.contributor.authoraffiliation[Gorriz, J. M.] Univ Cambridge, Dept Psychiat, Cambridge, England
dc.contributor.authoraffiliation[Suckling, J.] Univ Cambridge, Dept Psychiat, Cambridge, England
dc.contributor.authoraffiliation[Gorriz, J. M.] IbsGranada, Granada, Spain
dc.contributor.authoraffiliation[Puntonet, C. G.] Univ Granada, Dept Comp Architecture & Technol, Granada, Spain
dc.contributor.authoraffiliation[Martin-Clemente, R.] Univ Seville, Dept Signal Theory & Commun, Seville, Spain
dc.contributor.authoraffiliation[Ortiz, A.] Univ Malaga, Dept Commun Engn, Malaga, Spain
dc.contributor.funderMCIN/AEI/10.13039/501100011033
dc.contributor.funderFEDER
dc.contributor.funderJunta de Andalucia (Consejeria de Economia, Conocimiento, Empresas y Universidad)
dc.contributor.groupSiPBA Grp
dc.date.accessioned2023-05-03T15:11:46Z
dc.date.available2023-05-03T15:11:46Z
dc.date.issued2022-09-03
dc.description.abstractThere remains an open question about the usefulness and the interpretation of machine learning (ML) approaches for discrimination of spatial patterns of brain images between samples or activation states. In the last few decades, these approaches have limited their operation to feature extraction and linear classification tasks for between-group inference. In this context, statistical inference is assessed by ran-domly permuting image labels or by the use of random effect models that consider between-subject vari-ability. These multivariate ML-based statistical pipelines, whilst potentially more effective for detecting activations than hypotheses-driven methods, have lost their mathematical elegance, ease of interpreta-tion, and spatial localization of the ubiquitous General linear Model (GLM). Recently, the estimation of the conventional GLM parameters has been demonstrated to be connected to an univariate classification task when the design matrix in the GLM is expressed as a binary indicator matrix. In this paper we explore the complete connection between the univariate GLM and ML-based regressions. To this purpose we derive a refined statistical test with the GLM based on the parameters obtained by a linear Support Vector Regression (SVR) in the inverse problem (SVR-iGLM). Subsequently, random field theory (RFT) is employed for assessing statistical significance following a conventional GLM benchmark. Experimental results demonstrate how parameter estimations derived from each model (mainly GLM and SVR) result in different experimental design estimates that are significantly related to the predefined functional task. Moreover, using real data from a multisite initiative the proposed ML-based inference demonstrates sta-tistical power and the control of false positives, outperforming the regular GLM.
dc.description.versionSi
dc.identifier.citationJ.M. Gorriz, R. Martín-Clemente, C.G. Puntonet, A. Ortiz, J. Ramírez, SiPBA group, J. Suckling, A hypothesis-driven method based on machine learning for neuroimaging data analysis, Neurocomputing, Volume 510, 2022, Pages 159-171, ISSN 0925-2312,
dc.identifier.doi10.1016/j.neucom.2022.09.001
dc.identifier.essn1872-8286
dc.identifier.issn0925-2312
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.neucom.2022.09.001
dc.identifier.urihttp://hdl.handle.net/10668/22421
dc.identifier.wosID862258000014
dc.journal.titleNeurocomputing
dc.journal.titleabbreviationNeurocomputing
dc.language.isoen
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.number159-171
dc.publisherElsevier BV
dc.relation.projectIDRTI2018
dc.relation.projectID098913
dc.relation.projectIDB100
dc.relation.projectIDCV20-45250
dc.relation.projectIDA-TIC-080-UGR18
dc.relation.projectIDB-TIC-586-UGR20
dc.relation.projectIDP20-00525
dc.relation.projectIDUS-1264994 US/JUNTA/FEDER, UE
dc.relation.publisherversionsciencedirect.com/science/article/pii/S0925231222010876?via%3Dihub#ak005
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGeneral Linear Model
dc.subjectLinear Regression Model
dc.subjectSupport Vector Regression
dc.subjectpermutation tests
dc.subjectMagnetic Resonance Imaging
dc.subjectRandom Field Theory
dc.subjectSupport vector machine
dc.subjectFunctional mri
dc.subjectDiagnosis
dc.subjectFramework
dc.subject.decsAprendizaje automático
dc.subject.decsBenchmarking
dc.subject.decsEncéfalo
dc.subject.decsModelos lineales
dc.subject.decsProyectos de investigación
dc.subject.meshLinear Models
dc.subject.meshBenchmarking
dc.subject.meshResearch Design
dc.subject.meshBrain
dc.subject.meshMachine Learning
dc.titleA hypothesis-driven method based on machine learning for neuroimaging data analysis
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number510
dc.wostypeArticle
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Gorriz_AHypothesis.pdf
Size:
3.35 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Gorriz_AHypothesis_MaterialSuplementario.pdf
Size:
291.64 KB
Format:
Adobe Portable Document Format