Publication:
Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn's Disease Patients on Ustekinumab.

dc.contributor.authorChaparro, Maria
dc.contributor.authorBaston-Rey, Iria
dc.contributor.authorFernandez-Salgado, Estela
dc.contributor.authorGonzalez-Garcia, Javier
dc.contributor.authorRamos, Laura
dc.contributor.authorDiz-Lois Palomares, Maria Teresa
dc.contributor.authorArgüelles-Arias, Federico
dc.contributor.authorIglesias-Flores, Eva
dc.contributor.authorCabello, Mercedes
dc.contributor.authorRubio-Iturria, Saioa
dc.contributor.authorNuñez-Ortiz, Andrea
dc.contributor.authorCharro, Mara
dc.contributor.authorGinard, Daniel
dc.contributor.authorDueñas-Sadornil, Carmen
dc.contributor.authorMerino-Ochoa, Olga
dc.contributor.authorBusquets, David
dc.contributor.authorIyo, Eduardo
dc.contributor.authorGutierrez-Casbas, Ana
dc.contributor.authorRamirez-de-la-Piscina, Patricia
dc.contributor.authorBosca-Watts, Marta Maia
dc.contributor.authorArroyo, Maite
dc.contributor.authorGarcia, Maria Jose
dc.contributor.authorHinojosa, Esther
dc.contributor.authorGordillo, Jordi
dc.contributor.authorMartinez-Montiel, Pilar
dc.contributor.authorVelayos-Jimenez, Benito
dc.contributor.authorQuilez-Ivorra, Cristina
dc.contributor.authorVazquez-Moron, Juan Maria
dc.contributor.authorHuguet, Jose Maria
dc.contributor.authorGonzalez-Lama, Yago
dc.contributor.authorMuñagorri-Santos, Ana Isabel
dc.contributor.authorAmo, Victor Manuel
dc.contributor.authorMartin-Arranz, Maria Dolores
dc.contributor.authorBermejo, Fernando
dc.contributor.authorMartinez-Cadilla, Jesus
dc.contributor.authorRubin-de-Celix, Cristina
dc.contributor.authorFradejas-Salazar, Paola
dc.contributor.authorLopez-San-Roman, Antonio
dc.contributor.authorJimenez, Nuria
dc.contributor.authorGarcia-Lopez, Santiago
dc.contributor.authorFiguerola, Anna
dc.contributor.authorJimenez, Itxaso
dc.contributor.authorMartinez-Cerezo, Francisco Jose
dc.contributor.authorTaxonera, Carlos
dc.contributor.authorVarela, Pilar
dc.contributor.authorde-Francisco, Ruth
dc.contributor.authorMonfort, David
dc.contributor.authorMolina-Arriero, Gema
dc.contributor.authorHernandez-Camba, Alejandro
dc.contributor.authorGarcia-Alonso, Francisco Javier
dc.contributor.authorVan-Domselaar, Manuel
dc.contributor.authorPajares-Villarroya, Ramon
dc.contributor.authorNuñez, Alejandro
dc.contributor.authorRodriguez-Moranta, Francisco
dc.contributor.authorMarin-Jimenez, Ignacio
dc.contributor.authorRobles-Alonso, Virginia
dc.contributor.authorMartin-Rodriguez, Maria Del Mar
dc.contributor.authorCamo-Monterde, Patricia
dc.contributor.authorGarcia-Tercero, Ivan
dc.contributor.authorNavarro-Llavat, Mercedes
dc.contributor.authorArias-Garcia, Lara
dc.contributor.authorHervias-Cruz, Daniel
dc.contributor.authorKloss, Sebastian
dc.contributor.authorPassey, Alun
dc.contributor.authorNovella, Cynthia
dc.contributor.authorVispo, Eugenia
dc.contributor.authorBarreiro-de Acosta, Manuel
dc.contributor.authorGisbert, Javier P
dc.contributor.funderMinisterio de Economía y Competitividad
dc.contributor.funderInstituto de Salud Carlos III
dc.contributor.funderFondo Europeo de Desarrollo Regional (FEDER)
dc.date.accessioned2023-05-03T14:09:01Z
dc.date.available2023-05-03T14:09:01Z
dc.date.issued2022-08-03
dc.description.abstractUstekinumab has shown efficacy in Crohn's Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients' data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index ≤ 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission.
dc.description.sponsorshipCristina Rubin is supported by a grant from the Ministerio de Economía y Competitividad (Instituto de Salud Carlos III, Río Hortega CM21/00025) and co-funded by Fondo Europeo de Desarrollo Regional (FEDER).
dc.description.versionSi
dc.identifier.citationChaparro M, Baston-Rey I, Fernández Salgado E, González García J, Ramos L, Diz-Lois Palomares MT, et al. Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn's Disease Patients on Ustekinumab. J Clin Med. 2022 Aug 3;11(15):4518
dc.identifier.doi10.3390/jcm11154518
dc.identifier.issn2077-0383
dc.identifier.pmcPMC9369748
dc.identifier.pmid35956133
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369748/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2077-0383/11/15/4518/pdf?version=1660121025
dc.identifier.urihttp://hdl.handle.net/10668/21328
dc.issue.number15
dc.journal.titleJournal of clinical medicine
dc.journal.titleabbreviationJ Clin Med
dc.language.isoen
dc.organizationÁrea de Gestión Sanitaria Norte de Almería
dc.organizationHospital Universitario Reina Sofía
dc.organizationHospital Universitario Virgen de las Nieves
dc.organizationHospital Universitario Juan Ramón Jiménez
dc.organizationHospital Universitario Regional de Málaga
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationHospital Universitario Virgen Macarena
dc.organizationÁrea de Gestión Sanitaria Sur de Sevilla
dc.organizationAGS - Norte de Almería
dc.organizationAGS - Sur de Sevilla
dc.page.number17
dc.provenanceRealizada la curación de contenido 19/02/2025
dc.publisherMDPI
dc.pubmedtypeJournal Article
dc.relation.projectIDCM21/00025
dc.relation.publisherversionhttps://www.mdpi.com/resolver?pii=jcm11154518
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCrohn’s Disease
dc.subjectPredictive factors
dc.subjectUstekinumab
dc.subjectÁrea de Gestión Sanitaria Norte de Almería
dc.subjectÁrea de Gestión Sanitaria Sur de Sevilla
dc.subject.decsPreparaciones farmacéuticas
dc.subject.decsFenotipo
dc.subject.decsFactores de riesgo
dc.subject.decsUstekinumab
dc.subject.decsProductos biológicos
dc.subject.decsGravedad del paciente
dc.subject.meshBiological Products
dc.subject.meshBody Mass Index
dc.subject.meshLeukocyte L1 Antigen Complex
dc.subject.meshCrohn Disease
dc.subject.meshRisk Factors
dc.subject.meshPhenotype
dc.subject.meshPatient Acuity
dc.titleUsing Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn's Disease Patients on Ustekinumab.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9369748.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format