Publication:
A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data

dc.contributor.authorAgogo, George O
dc.contributor.authorvan der Voet, Hilko
dc.contributor.authorvan 't Veer, Pieter
dc.contributor.authorFerrari, Pietro
dc.contributor.authorMuller, David C
dc.contributor.authorSánchez-Cantalejo, Emilio
dc.contributor.authorBamia, Christina
dc.contributor.authorBraaten, Tonje
dc.contributor.authorKnüppel, Sven
dc.contributor.authorJohansson, Ingegerd
dc.contributor.authorvan Eeuwijk, Fred A
dc.contributor.authorBoshuizen, Hendriek C
dc.contributor.authoraffiliation[Agogo, GO; van der Voet, H; van Eeuwijk, FA] Wageningen Univ & Res Ctr, Biometris, Wageningen, Netherlands. [Agogo, GO] Yale Univ, Dept Internal Med, New Haven, CT USA. [van 't Veer, P] Wageningen Univ & Res Ctr, Dept Human Nutr, Wageningen, Netherlands. [Ferrari,P] Int Agcy Res Canc, Nutr Epidemiol Grp, Lyon, France. [Muller,DC] Int Agcy Res Canc, Genet Epidemiol Grp, Lyon, France. [Sanchez-Cantalejo,E] Andalusian Sch Publ Hlth, Granada, Spain. [Bamia,C] Univ Athens, Dept Hyg Epidemiol & Med Stat, Sch Med, Athens, Greece. [Braaten,T] Univ Tromso, Dept Community Med, N-9037 Tromso, Norway. [Knuppel,S] German Inst Human Nutr Potsdam Rehbrucke, Dept Epidemiol, Nuthetal, Germany. [Johansson,I] Umea Univ, Dept Odontol, Umea, Sweden. [Boshuizen,HC] Natl Inst Publ Hlth & Environm RIVM, Dept Stat Math Modelling & Data Logist, Bilthoven, Netherlands.
dc.contributor.funderThis work was supported financially by a PhD grant for GOA funded by Wageningen University and Research Centre (WUR) and National Institute for Public Health and the Environment (RIVM).
dc.date.accessioned2017-05-29T16:20:28Z
dc.date.available2017-05-29T16:20:28Z
dc.date.issued2016-10-13
dc.description.abstractBackground Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data. Methods We proposed a method to adjust for the bias in the diet-disease association (hereafter, association), due to measurement error in dietary intake and a mismeasured confounder, when there is no internal validation data. The method combines prior information on the validity of the self-report instrument with the observed data to adjust for the bias in the association. We compared the proposed method with the method that ignores the confounder effect, and with the method that ignores measurement errors completely. We assessed the sensitivity of the estimates to various magnitudes of measurement error, error correlations and uncertainty in the literature-reported validation data. We applied the methods to fruits and vegetables (FV) intakes, cigarette smoking (confounder) and all-cause mortality data from the European Prospective Investigation into Cancer and Nutrition study. Results Using the proposed method resulted in about four times increase in the strength of association between FV intake and mortality. For weakly correlated errors, measurement error in the confounder minimally affected the hazard ratio estimate for FV intake. The effect was more pronounced for strong error correlations. Conclusions The proposed method permits sensitivity analysis on measurement error structures and accounts for uncertainties in the reported validity coefficients. The method is useful in assessing the direction and quantifying the magnitude of bias in the association due to measurement errors in the confounders.es_ES
dc.description.versionYeses_ES
dc.identifier.citationAgogo GO, van der Voet H, van 't Veer P, Ferrari P, Muller DC, Sánchez-Cantalejo E, et al. A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data. BMC Med Res Methodol. 2016 Oct 13;16(1):139es_ES
dc.identifier.doi10.1186/s12874-016-0240-1es_ES
dc.identifier.essn1471-2288
dc.identifier.pmcPMC5064985
dc.identifier.pmid27737637es_ES
dc.identifier.urihttp://hdl.handle.net/10668/2686
dc.journal.titleBMC Medical Research Methodology
dc.language.isoen
dc.publisherBiomed Centrales_ES
dc.relation.publisherversionhttps://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-016-0240-1es_ES
dc.rights.accessRightsAcceso abiertoes_ES
dc.subjectAttenuation-contamination matrixes_ES
dc.subjectBayesian MCMCes_ES
dc.subjectMeasurement errores_ES
dc.subjectValidation studyes_ES
dc.subjectEPIC studyes_ES
dc.subjectEstudios de validaciónes_ES
dc.subjectSesgoes_ES
dc.subjectTeorema de Bayeses_ES
dc.subject.meshMedical Subject Headings::Health Care::Environment and Public Health::Public Health::Epidemiologic Methods::Statistics as Topic::Probability::Bayes Theoremes_ES
dc.subject.meshMedical Subject Headings::Health Care::Environment and Public Health::Public Health::Epidemiologic Factors::Bias (Epidemiology)es_ES
dc.subject.meshMedical Subject Headings::Health Care::Health Care Quality, Access, and Evaluation::Quality of Health Care::Health Care Evaluation Mechanisms::Evaluation Studies as Topic::Validation Studies as Topices_ES
dc.subject.meshMedical Subject Headings::Health Care::Environment and Public Health::Public Health::Epidemiologic Methods::Statistics as Topic::Models, Statisticales_ES
dc.titleA method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation dataes_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Agogo_AMethodForSensitivityAnalysis.pdf
Size:
491.78 KB
Format:
Adobe Portable Document Format
Description:
Artículo publicado
Loading...
Thumbnail Image
Name:
BY.png
Size:
1.43 KB
Format:
Portable Network Graphics
Description:
Licencia Creative Commons- Atribución