Publication:
Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase.

dc.contributor.authorGamiz-Arco, Gloria
dc.contributor.authorGutierrez-Rus, Luis I
dc.contributor.authorRisso, Valeria A
dc.contributor.authorIbarra-Molero, Beatriz
dc.contributor.authorHoshino, Yosuke
dc.contributor.authorPetrović, Dušan
dc.contributor.authorJusticia, Jose
dc.contributor.authorCuerva, Juan Manuel
dc.contributor.authorRomero-Rivera, Adrian
dc.contributor.authorSeelig, Burckhard
dc.contributor.authorGavira, Jose A
dc.contributor.authorKamerlin, Shina C L
dc.contributor.authorGaucher, Eric A
dc.contributor.authorSanchez-Ruiz, Jose M
dc.date.accessioned2023-02-09T10:39:47Z
dc.date.available2023-02-09T10:39:47Z
dc.date.issued2021-01-15
dc.description.abstractGlycosidases are phylogenetically widely distributed enzymes that are crucial for the cleavage of glycosidic bonds. Here, we present the exceptional properties of a putative ancestor of bacterial and eukaryotic family-1 glycosidases. The ancestral protein shares the TIM-barrel fold with its modern descendants but displays large regions with greatly enhanced conformational flexibility. Yet, the barrel core remains comparatively rigid and the ancestral glycosidase activity is stable, with an optimum temperature within the experimental range for thermophilic family-1 glycosidases. None of the ∼5500 reported crystallographic structures of ∼1400 modern glycosidases show a bound porphyrin. Remarkably, the ancestral glycosidase binds heme tightly and stoichiometrically at a well-defined buried site. Heme binding rigidifies this TIM-barrel and allosterically enhances catalysis. Our work demonstrates the capability of ancestral protein reconstructions to reveal valuable but unexpected biomolecular features when sampling distant sequence space. The potential of the ancestral glycosidase as a scaffold for custom catalysis and biosensor engineering is discussed.
dc.identifier.doi10.1038/s41467-020-20630-1
dc.identifier.essn2041-1723
dc.identifier.pmcPMC7810902
dc.identifier.pmid33452262
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810902/pdf
dc.identifier.unpaywallURLhttps://www.nature.com/articles/s41467-020-20630-1.pdf
dc.identifier.urihttp://hdl.handle.net/10668/16985
dc.issue.number1
dc.journal.titleNature communications
dc.journal.titleabbreviationNat Commun
dc.language.isoen
dc.organizationIBS
dc.page.number380
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, N.I.H., Extramural
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.pubmedtypeResearch Support, U.S. Gov't, Non-P.H.S.
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshAllosteric Regulation
dc.subject.meshAmino Acid Sequence
dc.subject.meshBacteria
dc.subject.meshCrystallography, X-Ray
dc.subject.meshEukaryota
dc.subject.meshGlycoside Hydrolases
dc.subject.meshHeme
dc.subject.meshMolecular Dynamics Simulation
dc.subject.meshPhylogeny
dc.subject.meshProtein Structure, Secondary
dc.subject.meshSequence Homology, Amino Acid
dc.titleHeme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7810902.pdf
Size:
6.35 MB
Format:
Adobe Portable Document Format