Publication:
Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.

dc.contributor.authorIrigoyen, Antonio
dc.contributor.authorJimenez-Luna, Cristina
dc.contributor.authorBenavides, Manuel
dc.contributor.authorCaba, Octavio
dc.contributor.authorGallego, Javier
dc.contributor.authorOrtuño, Francisco Manuel
dc.contributor.authorGuillen-Ponce, Carmen
dc.contributor.authorRojas, Ignacio
dc.contributor.authorAranda, Enrique
dc.contributor.authorTorres, Carolina
dc.contributor.authorPrados, Jose
dc.contributor.funderInstituto de Salud Carlos III
dc.contributor.funderMinisterio de Economía y Competitividad
dc.contributor.funderConsejería de Salud, Junta de Andalucía
dc.contributor.funderConsejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
dc.contributor.funderUniversity de Granada
dc.date.accessioned2023-01-25T10:06:06Z
dc.date.available2023-01-25T10:06:06Z
dc.date.issued2018-03-09
dc.description.abstractApplying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.
dc.description.versionSi
dc.identifier.citationIrigoyen A, Jimenez-Luna C, Benavides M, Caba O, Gallego J, Ortuño FM, et al. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers. PLoS One. 2018 Apr 4;13(4):e0194844
dc.identifier.doi10.1371/journal.pone.0194844
dc.identifier.essn1932-6203
dc.identifier.pmcPMC5884535
dc.identifier.pmid29617451
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884535/pdf
dc.identifier.unpaywallURLhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194844&type=printable
dc.identifier.urihttp://hdl.handle.net/10668/12309
dc.issue.number4
dc.journal.titlePloS one
dc.journal.titleabbreviationPLoS One
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.organizationHospital Universitario Reina Sofía
dc.organizationHospital Universitario Virgen de la Victoria
dc.page.number16
dc.publisherPublic Library of Science
dc.pubmedtypeJournal Article
dc.pubmedtypeMeta-Analysis
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDDTS15/00201
dc.relation.projectIDTIN2015-71873-R
dc.relation.projectIDPIN-0474-2016
dc.relation.projectIDP12-TIC-2082
dc.relation.projectID15/13
dc.relation.publisherversionhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194844
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.decsBases de datos factuales
dc.subject.decsBiomarcadores de tumor
dc.subject.decsCarcinoma ductal pancreático
dc.subject.decsFactores de intercambio de guanina
dc.subject.decsNucleótido
dc.subject.decsLeucocitos mononucleares
dc.subject.decsNeoplasias pancreáticas
dc.subject.decsProteínas supresoras de tumor
dc.subject.decsTranscriptoma
dc.subject.meshArea under curve
dc.subject.meshBiomarkers, tumor
dc.subject.meshCarcinoma, pancreatic ductal
dc.subject.meshDatabases, factual
dc.subject.meshGuanine nucleotide exchange factors
dc.subject.meshHumans
dc.subject.meshInterleukin-1 receptor-associated kinases
dc.subject.meshLeukocytes, mononuclear
dc.subject.meshPancreatic neoplasms
dc.subject.meshROC curve
dc.subject.meshTranscriptome
dc.subject.meshTumor suppressor proteins
dc.titleIntegrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.
dc.typeResearch article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC5884535.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Irigoyen_IntegrativeMulti-platform.zip
Size:
2.36 MB
Format: