Publication:
FANCD2 maintains replication fork stability during misincorporation of the DNA demethylation products 5-hydroxymethyl-2'-deoxycytidine and 5-hydroxymethyl-2'-deoxyuridine.

Loading...
Thumbnail Image

Date

2022-05-27

Authors

Peña-Gómez, María José
Moreno-Gordillo, Paula
Narmontė, Milda
García-Calderón, Clara B
Rukšėnaitė, Audronė
Klimašauskas, Saulius
Rosado, Iván V

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

Fanconi anemia (FA) is a rare hereditary disorder caused by mutations in any one of the FANC genes. FA cells are mainly characterized by extreme hypersensitivity to interstrand crosslink (ICL) agents. Additionally, the FA proteins play a crucial role in concert with homologous recombination (HR) factors to protect stalled replication forks. Here, we report that the 5-methyl-2'-deoxycytidine (5mdC) demethylation (pathway) intermediate 5-hydroxymethyl-2'-deoxycytidine (5hmdC) and its deamination product 5-hydroxymethyl-2'-deoxyuridine (5hmdU) elicit a DNA damage response, chromosome aberrations, replication fork impairment and cell viability loss in the absence of FANCD2. Interestingly, replication fork instability by 5hmdC or 5hmdU was associated to the presence of Poly(ADP-ribose) polymerase 1 (PARP1) on chromatin, being both phenotypes exacerbated by olaparib treatment. Remarkably, Parp1-/- cells did not show any replication fork defects or sensitivity to 5hmdC or 5hmdU, suggesting that retained PARP1 at base excision repair (BER) intermediates accounts for the observed replication fork defects upon 5hmdC or 5hmdU incorporation in the absence of FANCD2. We therefore conclude that 5hmdC is deaminated in vivo to 5hmdU, whose fixation by PARP1 during BER, hinders replication fork progression and contributes to genomic instability in FA cells.

Description

MeSH Terms

DNA Demethylation
DNA Replication
Deoxycytidine
Fanconi Anemia
Fanconi Anemia Complementation Group D2 Protein
Humans
Thymidine

DeCS Terms

CIE Terms

Keywords

Citation